5. Conclusions
The oxidation of oximes to nitrile oxides by the use of hypervalent iodine reagents provides new tactical opportunities for the synthesis of nitrogenous substances, natural or otherwise. While the first examples of this reaction13,14,17 predate our own contributions, the appearance of our 2009 paper19 seems to have rekindled interest in this noteworthy transformation. Indeed, numerous applications in natural product, bio-organic, heterocyclic, and materials chemistry have been described since. The method complements existing avenues to nitrile oxides, the usefulness of which in preparative operations is likely to make this chemistry of interest to a broad cross section of synthetic and medicinal chemists. In closing, we would be remiss not to underscore that the incentive to research the reactions discussed herein originated exclusively from a perceived need for new synthetic technology: Synthesis is, and will always be, the engine that drives chemical invention.
6. Acknowledgements
We thank the NSERC, CIHR, CFI, BCKDF, the Canada Research Chair Program (M.A.C.) and the University of British Columbia for support of our research program.
7. References and Notes
1. Monograph. (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: San Diego, 1997. Reviews: (b) Varvoglis, A. Synthesis 1984, 709. (b) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123. (c) Wirth, T.; Hirt, U. H. Synthesis 1999, 1271. (d) Moriarty, R. M. Org. React. 2001, 57, 327. (e) Zhdankin V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523. (f) Kita, Y. Yakugaku Zasshi 2002, 122, 1011. (g) Hamamoto, H.; Anilkumar, G.; Tohma, H.; Kita, Y. Chem. Eur. J. 2002, 8, 5377. (h) Moriarty, R. M. J. Org. Chem. 2005, 70, 2893. (i) Wirth, T. Angew. Chem. Int. Ed. 2005, 44, 3656. (j) Zhdankin, V. V. J. Org. Chem. 2011, 76, 1186. 2. Reviews: (a) Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M; Chang, J; Chai, D. Synthesis 2007, 3759. (b) Ciufolini, M. A.; Canesi, S.; Ousmer, M.; Braun, N. A. Tetrahedron 2006, 62, 5318. (c) Liang, H.; Ciufolini, M. A. Tetrahedron 2010, 66, 5884. 3. Reviews: (a) Pouységu, L.; Deffieux, D.; Quideau, S. Tetrahedron 2010, 66, 2235. (b) Roche, S. P.; Porco, J. A. Angew. Chem. Int. Ed. 2011, 50, 4068. 4. Hypervalent iodine reagents are also known to promote a limited number of oxidative phenolic amination reactions. (a) Scheffler, G.; Seike, H.; Sorensen, E. J. Angew. Chem. Int. Ed. 2000, 39, 4593. (b) Seike, H.; Sorensen, E. J. Synlett 2008, 695. (c) Mizutani, H.; Takayama, J.; Soeda, Y.; Honda, T. Tetrahedron Lett. 2002, 43, 2411. (d) Mizutani, H.; Takayama, J.; Soeda, Y.; Honda, T. Heterocycles 2004, 62, 343. (e) Mizutani, H.; Takayama, J.; Honda, T. Synlett 2005, 328. 5. (a) Braun, N. A.; Ciufolini, M. A.; Peters, K.; Peters, E.-M. Tetrahedron Lett. 1998, 39, 4667. (b) Braun, N. A.; Ousmer, M.; Bray, J. D.; Bouchu, D.; Peters, K.; Peters, E.-M.; Ciufolini, M.