The University of Michigan, an encyclopedic survey ... Wilfred B. Shaw, editor.
University of Michigan.

ACOMMUNICATION from Professors DeVolson Wood and Still-man W. Robinson to the Regents in December, 1868, requested the establishment of a course in mechanical engineering and asked that a description of the program and of the requirements for the degree of mechanical engineer be inserted in the Catalogue. On motion of Regent Sill the request was granted (R.P., 1864-70, p. 312). This is the first mention of mechanical engineering at the University of Michigan.

For admission the student was required to pass the general examinations for entrance to the scientific course and freshman mathematics. In the sophomore year the schedule included French, Surveying and General Geometry, Descriptive Geometry, Calculus, English, and History. In the junior year French, Philosophy of History, Perspective Drawing, Calculus, Astronomy, Machine Drawing, and Kinematics were required. The senior year included Physics, Theory and Use of Instruments, Principles of Mechanism, Strength of Materials, Drawing, Theory of Frames, Geology, Metallurgy, Theory and Construction of Prime Movers, and Millwork and Machines. Instruction was also given in the theory of pattern making, molding and machine shop practice, plans, elevations, sections, and drawing of machinery.

Apparently, the venture was not entirely successful, for in the Regents' Proceedings of June, 1870, it was resolved "that the degree of Mechanical Engineer…be and the same is hereby abolished, and the course of Civil Engineering be so extended as to include the main part of the course of Mechanical Engineering as heretofore prescribed." This arrangement was continued for eleven years, with Wood teaching the courses in mechanical engineering until he resigned in 1872. The following quotation from his report of that year gives an interesting description of the methods he used in teaching:

In the course of these lectures I introduced a novel mode of instruction, in order to exercise [the]…inventive faculties [of the students]. I assigned to them a problem, the character of which I was certain they were not familiar with, and asked them to solve it, make a drawing to represent their idea, accompany it with a specification, and report it to me. As soon as all had solved it who were able to, I reviewed their solutions and criticized them before the class, indicating the valuable points as well as the objectionable features. The following may serve as an example: — After describing the construction and operation of the ordinary D valve, and showing particularly that in order to open a port so as to reverse the stroke of the piston, the valve, up to the point of opening the port, is moving in the opposite direction from the piston, I asked the class to invent such an arrangement of parts as that the valve would open the port correctly if it moved the same way as the piston. In this way nearly all the working parts of the steam engine were considered, and problems assigned which involved modifications. The problems were simple, and were intended as a means of instruction, and not as puzzles. In their solution they not only became familiar with what exists, but also learned other possible ways of accomplishing the same end, and in connection with the criticisms, learned why a particular combination was used. In a class of thirty there would often be fifteen or twenty different solutions; but sometimes there would not be more than five or six different ones. The Class also read all that part of Warren's "Machine Construction Page  1258Drawing" which pertained especially to the steam engine.

(R.P., 1870-76, p. 213.)

Mortimer Elwyn Cooley (U. S. Naval Academy '78e, M.E. hon. Michigan '85, LL.D. Michigan Agricultural College '07, Eng.D. Nebraska '11, Sc.D. Armour Institute of Technology '23), assistant engineer of the United States Navy, at the request of the Regents, was detailed to the University of Michigan as Professor of Steam Engineering and Iron Shipbuilding in August, 1881, to establish courses in mechanical engineering in the Department of Civil Engineering. In September, 1881, his title was established as Professor of Mechanical Engineering. This designation of title may be considered as the birth of the Department of Mechanical Engineering (R.P., 1881-86, p. 89).

Cooley's first report to the Board of Regents as Professor of Mechanical Engineering follows:

At the close of this, my first year's connection with the University of Michigan, I deem it fit and an appropriate time to submit to your honorable body a report on the year's work, and on the future possibilities of the course in mechanical engineering … It was desired to establish in connection with the course in civil engineering a parallel course in mechanical engineering, which, with the reorganized course in mining engineering, would make a complete school of engineering. With this object in view the course in mechanical engineering was laid out as it now appears in the calendar. It was arranged so as to permit of development according to the demands of the students who might elect the work offered. It was not expected that it would be found necessary to give instruction in the advanced courses under two years at least, or until students should be regularly entered for the degree of mechanical engineer. When that time should have arrived, it was recognized that the proper amount of technical work necessary for the degree of mechanical engineer could not be given with the present teaching force in the Department of Engineering.

The opening of the school year disclosed a much greater demand for the courses offered than was anticipated. Even the advanced courses were in demand, those which it is not possible to give at present. The work was commenced under the most encouraging auspices, and has continued, even with the necessarily hasty and imperfect preparation of the subject matter of the courses, to attract favorable attention and considerable application on the part of the students.

The following is a list of the courses offered, with the number of students electing them during the past year:

    1. Workshop Appliances and Processes, Pattern Making, Moulding and Founding. A 2-5 course [Cooley]
  • 5 students.
  • 2. Mechanical Laboratory work (not given this year) [Shop Practice in Forging (first given in 1885 by Taylor)].
  • 3. Mechanical Laboratory work. A 2-5 course [Cooley]
  • 5 [6?] students.
  • 4. Machinery, Machine Construction and Drawing. A 3-5 course [Cooley and Dension]
  • 5 students.
  • 5. Mechanism and Machine Drawing. A 2-5 course [Denison]
  • 10 students.
  • 6. Machinery and Prime Movers. [Water Wheels and Steam Engines]. A 3-5 course [Cooley]
  • 6 students.
  • 7. Machine Design. A 3-5 course [Cooley and Denison]
  • 1 student.
  • 8. Thermodynamics (not given this year) [first given in 1882-3 Cooley].
  • 9. Original Design, Estimates, Specifications, and Contracts. A 2-5 course [Cooley]
  • 1 student.
  • 10. Naval Architecture (not given this year).
  • 11. Naval Architecture. A 2-5 course [Cooley]
  • 1 student.
  • Total number of students
  • 35
Courses 5 and 6 are identical with the courses of the same number in civil engineering, and the students taking them were mostly civil engineering students.

During the latter part of October the question of a mechanical laboratory was brought up for consideration. It was found Page  1259that the $2,500 appropriated by the legislature for a mechanical laboratory in connection with the Department of Civil Engineering would revert to the State treasury on January 1, 1882, because that department was not ready to use it; and it was suggested that the money might be advantageously expended in erecting a building and equipping the same (as a mechanical laboratory) for the Department of Mechanical Engineering. Although at first it did not seem possible to expend so small a sum for so large a purpose and be able to secure any immediate and desirable results, by careful calculation it was found that certain definite results might be accomplished with benefit to a limited number of students; and it was decided that if a building could be erected leaving $1,000 out of that $2,500 for the purpose of machinery and tools, results justifying the expenditure of the whole sum might be expected. On that decision the building and fixtures as they now [1882] appear were erected …

Notwithstanding considerable delay experienced in receiving goods from the manufacturers, it was … possible to open the Mechanical Laboratory at the beginning of the second semester. Six students were permitted to take the course, the number being confined to those who the first semester had taken … theory of workshop practice. … The six who took the course were not confined to a prescribed course of work, as is contemplated for the future, but were engaged for a large share of the time in overhauling and erecting the machinery in the shop … The remainder of the time was devoted to grinding and putting in order the cutting tools, in performing some of the simpler operations at the work-bench, in preparing work for the iron lathe, in wood-turning, forging, brazing, and soldering, and in running the engine. One student working for the master's degree was permitted to devote his entire time to the construction of an electric lamp with which to perform the experiments required by the subject of his thesis. Another student was permitted to devote a part of his time to the construction of a model of an automatic grain weigher to be used in mills and in grain elevators. The work of both of these gentlemen was creditable. Although broken and irregular the semester's work in the Mechanical Laboratory has shown conclusively that there is a demand for such work among the students, and that it may be made a successful and profitable, as well as a popular, course among the many such at this University …

A great and growing necessity has long been felt for better educated mechanics and for more practical engineers; and it is generally recognized that this necessity can best be met by having in connection with our schools, laboratories or workshops, in which the practical nature of tools and materials can be studied at the same time with the theoretical. These laboratories, or workshops, should be open not only to the students of engineering and architecture, but also to those students whose time and circumstances permit [them] to take only special work.

(R.P., 1881-86, pp. 239-43.)

Plans for the Mechanical Engineering Laboratory were prepared by J. B. Davis, and construction was begun in December, 1881. The two-story building was just south of the "Clock Tower" of the later shops. It measured twenty-four by thirty-six feet and was of frame construction, with brick placed edgewise between the studding. The ground floor was divided into two rooms, the foundry at the east end with a small cupola sixteen inches in diameter and five feet high adjacent to the central brick chimney, and the forge shop, brass furnace, and engine room at the west. The foundry also included two flasks, other necessary foundry tools, and molding sand.

The shop contained the first steam equipment in the Mechanical Engineering Laboratory, a forge, anvil, tools, a brass furnace, and a four-horsepower vertical fire-box boiler and steam engine. The second floor was also divided into two rooms, one of which was occupied by the pattern shop and the other by the machine shop. The equipment consisted of a wood-turning lathe built by Cooley Page  1260and members of his class, and an iron lathe, salvaged from the basement of University Hall and repaired by the students. The building was heated by an old-fashioned stove on the second floor next to the chimney. In cold weather it was found effective to melt ice in a pail of water on top of the stove in order to increase the humidity.

Because equipment was not available in this first building, much experimental work and testing were conducted under Cooley's direction in various industrial plants of southern Michigan. At this time all the classwork in engineering was taught in six rooms in the South Wing of University Hall.

On July 18, 1883, it was resolved that Professor Cooley be paid four hundred dollars for his services, to date from October 1, 1882. It should be said in defense of the University that Cooley was also receiving a salary from the Navy. He must have been encouraged, however, because, on the same day, he requested that a carpenter shop, measuring thirty by seventy-five feet, standing on the site of the present West Physics Building and used by the contractors in the construction of the Library, together with the machinery, be given to the Department of Mechanical Engineering. The request was granted, and the shop, moved and attached to the laboratory, served as a wood shop. This addition contained a planer, saws, and a steam engine. The old four-horsepower engine was sold, and the newly acquired engine was used to provide power for the laboratory.

By this time Cooley had added the following courses: 8, Theory of Machine Construction, 1 hour; 9, Machine Design, 5 hours; 6, Machine Dynamics, 2 hours; 11, Steam Engineering (Steam Generators, Steam Pumping, and Hoisting Machinery), Practical Laboratory Work, 3 hours; 4a, Shop Practice (Iron Work), 3 hours; 12, Shop Practice in Foundry, 2 hours. With the exception of the two shop practice courses, which were taught by Taylor (see Production Engineering), Cooley taught all of these himself.

By March, 1884, conditions apparently had begun to improve because a drill press was purchased for $180, and later in the year a room suitable for recitations and for the storage of models was assigned to the Laboratory.

In 1885 the Regents authorized a new mechanical laboratory, and it was resolved:

That Professor M. E. Cooley be and hereby is appointed Superintendent of the proposed building for the Engineering Laboratory, and that he be required to give such portion of his time as will not interfere with his duties as Professor of Mechanical Engineering as will insure a faithful performance of the contract — and that he discharge such other duties as may be directed by the committee on Buildings and Grounds … this appointment shall commence from the first operations of the contractors on the grounds, and continue during the active processes of the several works, and … the compensation shall be at the rate of fifty dollars per month.

(R.P., 1881-86, p. 583.)
This structure now comprises the north part of the east wing of the West Engineering Annex. Built of brick, with an interior of slow-burning mill construction, the three stories and attic originally measured forty by eighty feet. The ground floor was occupied by the Mechanical Engineering Laboratory; the second floor housed the machine shop and the third floor the pattern and wood shops. The attic was used for the storage of patterns and wood. Equipment was acquired for this laboratory partly by purchase and partly by gifts from industries. The original two-story frame structure built in 1881-82 and containing the foundry and forge shop was removed.

Page  1261Mechanical engineering continued to grow rapidly in importance. In 1891 the former Dental Building was acquired as additional classroom space. (The Clements Library now occupies this area.) The central or tower unit, which connected the two wings, contained tall mercury columns for calibrating pressure gages. In 1900 a twenty-foot extension was added to the laboratory (the south end of the east wing).

Cooley did most of the teaching himself until 1895. In 1904, after the death of Dean Charles E. Greene, Cooley was appointed Dean of the College. He held this position until his retirement in June, 1928, at the age of seventy-three.

Dean Cooley was a man of unusual and versatile personality, who envisaged large issues in complete perspective, yet never overlooked, and apparently never forgot, details. He possessed not only a keen intellect and the essential practicality of the engineer, but also a fine sense of humor. He was an especially good storyteller and a master of the art of influencing people. To him is due in large part the fine relationship which has always existed between students and faculty of the College.

Cooley established the first courses in shop practice, which were taken over in 1885-86 and developed by Professor Clarence George Taylor (Worcester Polytechnic Institute '81, M.E. ibid. '81, Michigan '02d) as Superintendent. He began the courses in naval architecture and mechanical engineering laboratory and introduced work in dynamics and design. After the Engineering Shops became a separate unit, he became Professor of Mechanical Practice in 1897, but resigned two years later to study dentistry. In one of the basic machine design courses in the early years a pamphlet written by Cooley, Dynamics of Reciprocating Parts of Engines, was used in conjunction with Unwin's well-known Elements of Machine Design for text.

Assistant Professor Frank Caspar Wagner (M.A. '84, '85e [M.E.]) taught Laboratory, Dynamics of Machinery and Engines, Thermodynamics, and Steam Engineering from 1890 to 1896, when he left to teach at Rose Polytechnic Institute, of which he later became president.

In addition to the courses mentioned, the following were available in 1896: Principles of Mechanism (Denison), Design of Shop Machinery (Taylor), Theory of Machine Design (Cooley), Steam Engines (Allen), Design of General Machinery (Cooley), Machinery and Mill Work (Cooley), Design of Engines and Boilers (Cooley), Dynamics of Engines: Valve Gears (Cooley and Wagner), Heating and Ventilation (Cooley), Compressed Air Machinery and Refrigeration (Cooley and Wagner). The increased importance of quantitative creative work is evident in the emphasis on design of machinery rather than on mere descriptive study.

The south wing and center section of the West Engineering Building, now occupied by the main Mechanical Engineering Laboratory, which has an area of almost 15,000 square feet, were erected in 1904. The equipment in the laboratory from the time of its first occupancy in 1886 until it was moved to its present location consisted of a steam engine built by the students in 1887, an Erie steam engine acquired with the joiner shop and used until 1921, an E. P. Allis Corliss engine which at the time of its purchase about 1891-92 was supplied with steam from the University power plant, a Stirling boiler bought by Cooley in 1894 and used only for experimental purposes, a small surface condenser, a DeLaval turbogenerator, a Murray turbine, and a Mietz and Weiss oil engine acquired from an exhibit at the Pan-American Exposition in Buffalo in 1901. Page  1262There were also a Rider hot-air engine and a Fairbanks-Morse gas engine, loaned to the Laboratory in 1896 and used until 1936, an Olsen testing machine, and the Cooley indicator tester or pressure gage calibrator, built as the result of a test on the Ann Arbor Water Works pumping engine.

During the first semester of 1904-5, this equipment was moved to the new Mechanical Engineering Laboratory, in the West Engineering Building. The forge shop was enlarged and moved to the ground floor of the east wing of the present Annex vacated by the Mechanical Laboratory, and the foundry was expanded to occupy the space relinquished by the forge shop. Additional equipment acquired later included boilers, stokers, superheaters, steam engines, Unaflow engines, air compressors, blowers, gas engines, particularly an Otto gas engine that is now a museum piece. A Brayton engine, acquired in 1912 through the efforts of J. E. Emswiler, for many years furnished power for a spice mill in the wholesale grocery house of the late Colonel Deane of Ann Arbor. The equipment also included oil engines and diesels, hot-air engines, and a refrigerating plant, acquired in 1910 from the Creamery Package Manufacturing Company of Chicago, stationary and portable electric motors and dynamometers, pumps, and steam injectors.

Professor Charles Simeon Denison (Vermont '70, C.E. ibid. '71, M.S. ibid. '74) taught Mechanism and Machine Drawing from 1881 until the time of his death in 1913, when it was abandoned. The mechanism course included valve gears from 1898 until 1908, when Valve Gears was offered separately by Bursley and others, particularly by Charles Horace Fessenden (Missouri '06e [M.E.], M.E. ibid. '08), who was appointed Instructor in 1908 and served as Professor from 1919 until his death in 1934. He developed a text, Valve Gears, in connection with this course, which was discontinued in 1915.

Sketching of Machine Details, first offered in 1905, became Machine Drawing in 1908. It was given by Bursley, C. Wilson, F. A. Mickle, and others until transferred to the Department of Mechanism and Engineering Drawing in 1922. Theory of Machine Movements (intended as a mechanism course) was instituted as a required course by Zowski in 1915 and abandoned in 1933.

Machine Design, introduced in 1881 by Cooley, was the first mechanical engineering design course. In 1883 he initiated Theory of Machine Construction to accompany the first course. This was soon followed by Design of Engines and Boilers and Design of Shop Machinery which was probably the forerunner of Machine Tool Design, introduced in 1897-98. Design of Hoisting Machinery was presented in the same year, and from that time until 1912 specialized machine design courses were known as Machine Design, with the content of the course indicated — Machine Design: Shop Machinery.

Design of Machine Details was introduced in 1909 to supplement the theory course; in 1912 the machine design course for electrical engineers was abandoned, and its content largely merged in the basic machine design course. Theory of Machine Design was the principal basic course from 1882, when Cooley and Denison taught it, until 1934, when Elements of Machine Design, introduced in 1915, was strengthened and became the basic course. Both the basic course and the advanced or second course are combination classroom and drawing courses consisting of two four-hour periods a week, the first hour being devoted to general instruction and the remaining three hours to drawing. Boston has been teaching Machine Page  1263Tool Design since 1935. By 1940 two nonmachine elective design courses were on an equal footing with the machine design courses, Design of Power Plants and Design of Heating and Ventilating Systems.

In 1898 Allen initiated a heat engines course, Boilers, Steam Engines, and Denison gave Mechanism, Valve Gears, which has, with various changes in name and content, continued to be a part of the curriculum. Heat Engines, a separate course, was offered for the first time in 1913-14. Instructors since 1905 have included Anderson, Bursley, Emswiler, Keeler, Boston, Wilson, W. F. Verner, Fessenden, and Watson.

John Robins Allen ('92e [M.E.], M.E. '96), who began teaching in 1897 as Instructor, became head of the department in 1904 and Professor in 1907. He resigned in 1917 to become dean of the Engineering College of the University of Minnesota. Allen was an interesting and inspiring teacher, tolerant in outlook and possessed of a wealth of personal and professional experience on which to draw. On leave of absence for the purpose in 1911-12 he established an engineering school at Robert College, Istanbul, Turkey. He was the author of a small book entitled Notes on Heating and Ventilation, one of the earliest American publications on this subject, and co-author (with J. A. Bursley) of Heat Engines, and (with J. H. Walker) of Heating and Ventilation.

Henry Clay Anderson (Kentucky '97e [M.E.]) came to Michigan as Instructor in 1899. After successive promotions he became Professor of Mechanical Engineering in 1912. He was head of the department from 1917 to 1937, when he became Dean of the College upon the resignation of Dean Sadler. He was a most effective teacher and was regarded with unusual affection and esteem by students and staff. He taught heat engines, the mechanical engineering laboratory courses, and thermodynamics.

Advances in technology and a corresponding demand for thermodynamics resulted in this subject's first appearance as a regular part of the curriculum in 1905-6, although a course in thermodynamics had been offered occasionally before that time. Anderson gave the course at first, and he was followed by Emswiler, Fessenden, Keeler, Calhoon, and others.

After Moyer's resignation in 1912 Emswiler was given general charge of the laboratory instruction. John Edward Emswiler (Ohio State '03e [M.E.]) came to the University as Instructor in 1906. He was appointed Professor in 1918 and was chairman of the department from 1937 until his death in 1940. Among other courses he also taught Design of Machine Details and Mechanical Engineering Laboratory. He is the author of Thermodynamics.

The two main laboratory courses in mechanical engineering were introduced in 1898. At first called Mechanics Laboratory, the name was later changed to the more accurate Mechanical Engineering Laboratory. The basic or first course contained some materials testing until 1910 and much calibration work until 1913, as the laboratory testing machinery was in the shop. They were given as Mechanical Engineering Laboratory first and second courses, and a fee of five dollars was required for each until 1920. An advanced course, first offered in 1909-10 by Moyer and Bursley, was called Research Work in the Mechanical Laboratory in the second semester.

Joseph Aldrich Bursley ('99e [M.E.]), who was appointed Instructor in 1904, was promoted to Professor of Mechanical Engineering in 1917. When he became the first Dean of Students in the University in 1921, he continued to teach a section of Heat Engines, and he regularly Page  1264attended staff meetings until his retirement in 1947.

James Ambrose Moyer (Lawrence Scientific School, Harvard '99, A.M. Harvard '04) was Assistant Professor from 1908 to 1912 and in charge of the Mechanical Engineering Laboratory in 1911-12. He resigned and later became head of the Massachusetts State Department of Education. He wrote Power Plant Testing while here.

When Hydraulics Laboratory, advanced course, was first offered by Zowski in 1912-13, the laboratory part of the course was dovetailed with Mechanical Engineering Laboratory, second course.

Stanislaus Jan Zowski (Polytechnicum Charlottenburg '05) was appointed Instructor in 1907. His special interest was in water turbine design, and an experimental low-head reaction turbine was built in the Engineering Shops from his designs. He was Professor of Mechanical Engineering from 1912 to 1922, when he returned to Warsaw.

Harold Rhys Lloyd (King William College [Isle of Man], '99, M.A. Cambridge '03) was appointed Instructor in 1912. He left for England in 1915, but returned as Assistant Professor in 1924 and became Associate Professor in 1936. He retired in 1950.

Hugh Edward Keeler ('12e [E.E.], M.E. '31) became Instructor in Mechanical Engineering in 1917. He was promoted to Professor in 1933. He taught Heat Engines, Mechanical Engineering Laboratory, Advanced Mechanical Research, Thermodynamics, Design of Steam Generating Equipment, Heating and Ventilation, Air-conditioning Systems, Steam Turbines, Refrigeration, Diesel Power Plants, Automotive Electrical Equipment, and Engine Acceptance Testing.

Sherzer gave courses in Hydraulics from 1920-21 until he retired in 1946. Allen Firman Sherzer ('13e [M.E.]), who had been Teaching Assistant in the department from 1914 to 1916, returned as Assistant Professor in 1920, and in 1931 was promoted to Professor of Mechanical Engineering. He taught Pumping Machinery and Design and Hydraulic Turbines and Design in addition to the Hydraulic Laboratory course.

In the semester before the introduction of Hydraulics Laboratory, Zowski offered a course of the same name, with fewer credit hours, apparently the forerunner of the course charted the next semester. In 1929-30 a one-hour laboratory course was introduced by Axel Marin ('22e [M.E.]) for students who did not have to take the first mechanical engineering laboratory course. Marin became Instructor in 1922 and Professor in 1945.

A co-operative arrangement with the Department of Chemical Engineering in 1919-20 made possible a one-hour chemical engineering course for mechanical engineers, which included fuel testing, gas analysis, and water treatment.

By 1937 the curriculum for the bachelor's degree had grown to such an extent that it included fifty-four courses, with seventy-four hours of preparatory work, fifty hours of secondary and technical work, and sixteen hours of electives. The subjects offered were grouped under Machine Design, Heat and Power, Heat Engines, Thermodynamics, Power Plants and Hydraulic Machinery, Mechanical Engineering Laboratory courses, Steam Power Engineering, Internal Combustion Engineering, Automotive Engineering, Industrial Engineering, Heating and Ventilating, and Refrigeration and Air Conditioning. A five-year curriculum in mechanical and industrial engineering leading to the master's degree in industrial engineering was first offered by the department in 1935. Specialized courses on diesel engines were offered for the first time in 1937 by Vincent, and in the second semester of Page  12651938-39 a laboratory course in air conditioning was introduced. The first extension course in industrial air conditioning was given in Detroit in 1939-40. In this year arrangements were also made to offer an elective course in metallurgy for students in mechanical engineering. At about the same time the courses in internal combustion engineering were expanded, and arrangements were made for an Internal Combustion Engine Institute in the summer of 1940.

Hawley was made acting chairman of the department in 1939, and, after the death of Emswiler in 1940, he was appointed to the chairmanship. Ransom Smith Hawley ('07e [E.E.], M.E. '15) came to the University of Michigan from the Colorado School of Mines in 1917. He became Professor of Mechanical Engineering in 1920 and served until his retirement in 1951. Professor Edward Thomas Vincent (London '21) succeeded as the chairman. Before coming to the University in 1936-37 he had been chief engineer for the Continental Motors Corporation in Detroit. Harry James Watson (Ohio State '15e [M.E.]), appointed Instructor in 1916 became Assistant Professor in 1921. Clarence Frank Kessler ('19e [M.E.], M.S.E. '24) joined the staff as Instructor in 1920, becoming Associate Professor in 1943. Floyd Newton Calhoon (Louisiana State '16, M.S. Michigan '35), who became Instructor in 1923, was made Professor in 1952. Charles Willett Spooner, Jr. (M.E. Cornell '34, M.S. Michigan '35) was added to the staff as Instructor in 1936; he transferred to Naval Architecture and Marine Engineering in 1945.

In 1937-38, 419 students were enrolled in the department; in 1948-49, 1,219; and in the second semester of 1951-52, 309 in mechanical engineering and 98 in mechanical and industrial engineering. Facilities of the Engineering College were taxed to the utmost after World War II, and it was only by greatly increasing the number of students in each section that instruction could be carried on. From 1940 to 1942 Hawley conducted a study of the curriculum that led to the introduction of an orientation course at the sophomore level, and a revision of the mechanism and design courses.

In addition to the regular work of the department, special extension courses, special courses for military groups, and courses for training civilians as factory production inspectors were given. The full-length summer term was introduced in 1942. In 1943 the Army Specialized Training Program was begun, and the Navy program was set up. The A.S.T.P. was discontinued in April, 1944, but the Navy program did not terminate until more than a year later.

In the fall of 1947 a new program was adopted that increased the time devoted to thermodynamics and electrical engineering, broadened the requirements in technical applications courses, and decreased the time devoted to metal processing and surveying. A senior course in process equipment design was offered in the fall of 1945, and the industrial air-conditioning extension course was adapted to the regular program in the second semester of 1947-48. Additions to the senior level courses include Industrial Exhaust and Ventilation Laboratory, and Rocket Motors, first offered in the second semester of 1951-52.

Service courses in heating and air conditioning were also given for students in the College of Architecture and Design and in heat-power engineering for students in chemical and metallurgical engineering.

The manner of conducting laboratory work has changed greatly since 1882, when little equipment was available and the work was more or less impromptu. In addition to the regular instruction, among the many experiments carried Page  1266on in the Mechanical Engineering Laboratory have been tests on steam radiators and investigations in heating and ventilation. Space for a heat laboratory was released when the Architecture Building was completed in 1927. This laboratory was used extensively by Fessenden and Keeler for radiator tests and by Emswiler and Keeler for work on heat transfer through glass windows. When Engineering Shops moved from the West Engineering Annex in 1923, additional laboratory space for special projects was acquired by the department.

Repair work for the Laboratory was done in the University Instrument Shop until about 1925. This shop is now called upon to build only special equipment that cannot be handled in the laboratory's own repair shop, which was moved to its present location in 1910. Also serving the Laboratory are the instrument room and the tool room. The equipment includes more than one hundred and twenty pressure gages, thirty-five indicators, and temperature measuring instruments of all kinds.

The years immediately preceding 1937 saw no major additions to the equipment of the Mechanical Engineering Laboratory, but by 1940 a motor generator set had been acquired. When the "G.I." students appeared on the campus, the department found itself seriously handicapped for want of satisfactory training equipment. Hawley worked with the War Surplus Procurement office of the University for improvements. The department added a Westinghouse air compressor, a diesel engine, a Cummins diesel engine generator unit, a 400-horsepower Midwest dynamometer, a Spencer turbo-compressor and motor drive, a twenty-ton refrigeration machine and condenser, high-pressure blowers, an arc welding machine, three machine lathes, a twenty-horsepower electric motor, and various small motors, tools, and instruments. About $90,000 was appropriated for the rehabilitation of the laboratory, which was accomplished in the years 1948-51. The following equipment was purchased: a complete General Electric educational power plant, a ten-horsepower dynamometer with switchboard, controls, and instruments; a 100-horsepower Ward Leonard unit with dynamometer, a 15 kw turbogenerator with instrumentation; equipment to complete the surplus Frigidaire refrigeration plant so that it comprised an educational air-conditioning unit of twenty tons; an industrial air-conditioning laboratory; silica gel dehumidifier unit; instruments for instruction and research work; a Joy fan; an American Blower Axivane fan; a set of Bus Duct electric supply equipment; a set of T-bolt rails to provide fit-all floor fastenings for equipment; and various items for the Automotive Laboratory. In addition, gifts included a Timken oil-fired heating boiler, a Vickers hydraulic drive test stand; a Timken oil-fired warm air furnace; two Continental gasoline engines, and an Aeroquip hydrauloscope.

As the number of students increased and technology expanded, new tests were added to the laboratory courses. When the United States entered World War I in 1917, additional changes were necessarily made in the manner of carrying on the laboratory work. The term plan was temporarily adopted but later abandoned. After the war the scope of the work was enlarged to include a wider range of tests for Mechanical Engineering 7 and 8 (17 and 18 in 1952), which have been the main laboratory courses.

Six students were enrolled in the first course given in the Mechanical Laboratory in 1882. In the first semester of 1920, there were 105 men in the first course and eighty-five in the second. In 1937 eighty-five students were enrolled in the first course and fifty-one in the second; in Page  12671952, 166 were in the first course and 114 in the second.