Bernhard Riemann's gesammelte mathematische Werke. Nachträge. Herausgegeben von M. Noether und W. Wirtinger. Mit 9 Figuren im Text.
Annotations Tools
der Integrale algebraischer Differentialien. 1 17 Die zugehoirigen Funktionen qp werden zu cosZ + CiS ~ c2Z ~ C3. [Verm~5ge einer Tra-nsformation S Z:8S:0:1= 2: Z:1: Z _ geht F(s, z) == 0 in eine homogene Relation dritter Dimension zwischen z1, IZ2 I Z31 Z4 fiber, weiche, nach Zufiigung eines Ausdrucks der Form (a, z1 + a2 z2 + a. ~3+a4 4) (z'l z3 z 2 -4) die aligemeinste ihrer Art ist. Die 9 Moduin ergeben sich, wenn man s durch eine lineare Funktion von s, und z durch eine soiche von z, mit willkiirlichen Konstanten, ersetzt.] b) Es m~gen von den secis, Nu~lwerten von 02 vier soiche von 01 sein. Dann wiirden: 01 und 02 fuir 4 Werte gpleichzeitig zu 0, 05,, 02 Yn 2,,,, Y1,~ 03,, 04 1, 4,,,,, 0. Die beiden obige'n Funktionen s und 0 wiirden bezw. 4-mal, 2-mal unendlich von der ersten Ordnung, und die einfacliste Gleichung wiirde 2 4 o. F (S' o) [Diese Gleichung ist nun entweder: a~) irreduktibel; dann geh,5rt sie, niclit mehr zu p 4, sondern zum. hyperelliptischen Falle von p == 3, wobei sich auch s z: 8: Z: 1 niclit mehr wie, q' - Funktionen verhalten. Die Annalime (A, b) ist dann also unstatthaft. Oder: 2 4 1 2 ~)reduktibel; F~(s, z) wird. emn vollst~ndiges Quadrat einer Funktion 0i(s, z). Alsdann definieren die beiden Gleichungen Z1z-; —z2z4 -— O, ( ~=O nicht mehr die algebraisehe Kiasse; und. letztere Gleichung MU13 sich mittels ersterer unter Wegschaffen eines linearen Faktors z4 auf die Form -v, (a, z, + a. Z2 + a3 ZS + a4 Z4 + Z4 (a. Z. ~ a, Z4) = — 0 bringen, sodat$ noch eine zweite quadratische Relation, und damit audi eine dritte, zwischen den vier Funktionen q, besteht: man hat den hyperelliptischen Fall p = 4.] c) Wenn von seclis Nuliwerten von 02 fiinf solche vonI 01 wiairen, so wiirde fair den seclisten 03 zn. Null, und die Gleichung wiirde 1 5 F(s~Z) = 0 [eine Zn p = 0 gehtbrige Gleichung, so daB auch diese Annahme (A), c) unstatthaft ist]. Man hat -nun weiter den Fall zu untersuchen, daB die homogene Funktion zweiten Grades der vier Gr6l8en (p sich auf nur drei Quadrate reduziert: (B) y1 2+Y22~ Y 32 =O, RiEmANN's gesammelte mathematische Werke. Naclitraige. 2
-
Scan #1
Page #1 - Front Matter
-
Scan #2
Page #2 - Front Matter
-
Scan #3
Page #3 - Front Matter
-
Scan #4
Page #4 - Front Matter
-
Scan #5
Page I - Title Page
-
Scan #6
Page II
-
Scan #7
Page III
-
Scan #8
Page IV
-
Scan #9
Page V
-
Scan #10
Page VI
-
Scan #11
Page VII
-
Scan #12
Page VIII
-
Scan #13
Page 1
-
Scan #14
Page 2
-
Scan #15
Page 3
-
Scan #16
Page 4
-
Scan #17
Page 5
-
Scan #18
Page 6
-
Scan #19
Page 7
-
Scan #20
Page 8
-
Scan #21
Page 9
-
Scan #22
Page 10
-
Scan #23
Page 11
-
Scan #24
Page 12
-
Scan #25
Page 13
-
Scan #26
Page 14
-
Scan #27
Page 15
-
Scan #28
Page 16
-
Scan #29
Page 17
-
Scan #30
Page 18
-
Scan #31
Page 19
-
Scan #32
Page 20
-
Scan #33
Page 21
-
Scan #34
Page 22
-
Scan #35
Page 23
-
Scan #36
Page 24
-
Scan #37
Page 25
-
Scan #38
Page 26
-
Scan #39
Page 27
-
Scan #40
Page 28
-
Scan #41
Page 29
-
Scan #42
Page 30
-
Scan #43
Page 31
-
Scan #44
Page 32
-
Scan #45
Page 33
-
Scan #46
Page 34
-
Scan #47
Page 35
-
Scan #48
Page 36
-
Scan #49
Page 37
-
Scan #50
Page 38
-
Scan #51
Page 39
-
Scan #52
Page 40
-
Scan #53
Page 41
-
Scan #54
Page 42
-
Scan #55
Page 43
-
Scan #56
Page 44
-
Scan #57
Page 45
-
Scan #58
Page 46
-
Scan #59
Page 47
-
Scan #60
Page 48
-
Scan #61
Page 49
-
Scan #62
Page 50
-
Scan #63
Page 51
-
Scan #64
Page 52
-
Scan #65
Page 53
-
Scan #66
Page 54
-
Scan #67
Page 55
-
Scan #68
Page 56
-
Scan #69
Page 57
-
Scan #70
Page 58
-
Scan #71
Page 59
-
Scan #72
Page 60
-
Scan #73
Page 61
-
Scan #74
Page 62
-
Scan #75
Page 63
-
Scan #76
Page 64
-
Scan #77
Page 65
-
Scan #78
Page 66
-
Scan #79
Page 67
-
Scan #80
Page 68
-
Scan #81
Page 69
-
Scan #82
Page 70
-
Scan #83
Page 71
-
Scan #84
Page 72
-
Scan #85
Page 73
-
Scan #86
Page 74
-
Scan #87
Page 75
-
Scan #88
Page 76
-
Scan #89
Page 77
-
Scan #90
Page 78
-
Scan #91
Page 79
-
Scan #92
Page 80
-
Scan #93
Page 81
-
Scan #94
Page 82
-
Scan #95
Page 83
-
Scan #96
Page 84
-
Scan #97
Page 85
-
Scan #98
Page 86
-
Scan #99
Page 87
-
Scan #100
Page 88
-
Scan #101
Page 89
-
Scan #102
Page 90
-
Scan #103
Page 91
-
Scan #104
Page 92
-
Scan #105
Page 93
-
Scan #106
Page 94
-
Scan #107
Page 95
-
Scan #108
Page 96
-
Scan #109
Page 97
-
Scan #110
Page 98
-
Scan #111
Page 99
-
Scan #112
Page 100
-
Scan #113
Page 101
-
Scan #114
Page 102
-
Scan #115
Page 103
-
Scan #116
Page 104
-
Scan #117
Page 105
-
Scan #118
Page 106
-
Scan #119
Page 107
-
Scan #120
Page 108
-
Scan #121
Page 109
-
Scan #122
Page 110
-
Scan #123
Page 111
-
Scan #124
Page 112
-
Scan #125
Page 113
-
Scan #126
Page 114
-
Scan #127
Page 115
-
Scan #128
Page 116
-
Scan #129
Page #129
-
Scan #130
Page #130
-
Scan #131
Page #131
-
Scan #132
Page #132
Actions
About this Item
- Title
- Bernhard Riemann's gesammelte mathematische Werke. Nachträge. Herausgegeben von M. Noether und W. Wirtinger. Mit 9 Figuren im Text.
- Author
- Riemann, Bernhard, 1826-1866.
- Canvas
- Page 9
- Publication
- Leipzig,: B. G. Teubner,
- 1902.
- Subject terms
- Geometry -- Foundations.
- Mathematics.
- Functions, Abelian.
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/akh1067.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/akh1067.0001.001/29
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:akh1067.0001.001
Cite this Item
- Full citation
-
"Bernhard Riemann's gesammelte mathematische Werke. Nachträge. Herausgegeben von M. Noether und W. Wirtinger. Mit 9 Figuren im Text." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/akh1067.0001.001. University of Michigan Library Digital Collections. Accessed May 17, 2025.