Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
Annotations Tools
66 positus dividendus sit iste 56088, cuius proba est 0. Sit divisor iste 123 cuius proba est 6. Facta igitur divisione erit numerus quotiens iste 456, cuius proba est etiam 6. Due ergo probam divisoris in probam numeri quotiens, et proveniunt 36, 5 quorum proba est 0, sicut est proba numeri dividendi. Verumptamen facta divisione residuum si quid fuerit, aliud quid est faciendum; quia videas probam illius residui, et ear tollas de proba totius numeri propositi primo (dividendi), si poteris; si non, tune probae numeri totalis addas 9, et postea subtrahas o1 probam residui, et tune duc probam numeri divisoris in probam numeri quotiens, et provenientis probam serva, quae si fuerit aequalis probae numeri primae, bene fecisti. Verbi gratia: numerus propositus primo dividendus erat iste 9876, cuius proba est 3, numerus autem divisor erat iste (543, cuius proba est 3, 15 et humerus quotiens erat iste) 18, cuius proba est 0. Facta autem divisione remanserunt 102, cuius proba est etiam 3. Subtrahas igitur probam numeri residui de proba numeri primo propositi dividendi, et remanet 0. Due autem probarn numeri divisoris in probam numeri quotiens, et provenit 0, quare bene 20 operatus est. OCTAVA SPECIES, QUAE EST PROG6ESSIO. Progressio est numerorum etc". Haec est octava species, quae est insufficiens, quia se ad omrnem numerum non extendit et undecumque inceptum; ideo loco huius capituli illud, si 25 placet, pro textu habeatur. Progressio est numerorum secutnduzn aequales excessus augmentatorum aggregatio, ut wuniversorum summan compendiose habeatur. Unde si ex aggregatione numeri ultii cut cr primo resultat numerus par, per eiuss nmedietatem mutitipicetuir~ n1aue30 rus locorumn; si veto impar, per eurmn mudtilticettr mledietas numeri locoruim, et exibit summal quaesita. In hoe octavo capitulo duo fiunt. Primo enim describitur progressio, secundo de ea dantur duae regulae, per quas tota
-
Scan #1
Page #1
-
Scan #2
Page I - Title Page
-
Scan #3
Page II
-
Scan #4
Page III
-
Scan #5
Page IV
-
Scan #6
Page V
-
Scan #7
Page VI
-
Scan #8
Page VII
-
Scan #9
Page VIII
-
Scan #10
Page IX
-
Scan #11
Page X
-
Scan #12
Page XI
-
Scan #13
Page XII
-
Scan #14
Page XIII
-
Scan #15
Page XIV
-
Scan #16
Page XV
-
Scan #17
Page XVI
-
Scan #18
Page XVII
-
Scan #19
Page XVIII
-
Scan #20
Page XIX
-
Scan #21
Page XX
-
Scan #22
Page 1
-
Scan #23
Page 2
-
Scan #24
Page 3
-
Scan #25
Page 4
-
Scan #26
Page 5
-
Scan #27
Page 6
-
Scan #28
Page 7
-
Scan #29
Page 8
-
Scan #30
Page 9
-
Scan #31
Page 10
-
Scan #32
Page 11
-
Scan #33
Page 12
-
Scan #34
Page 13
-
Scan #35
Page 14
-
Scan #36
Page 15
-
Scan #37
Page 16
-
Scan #38
Page 17
-
Scan #39
Page 18
-
Scan #40
Page 19
-
Scan #41
Page 20
-
Scan #42
Page 21
-
Scan #43
Page 22
-
Scan #44
Page 23
-
Scan #45
Page 24
-
Scan #46
Page 25
-
Scan #47
Page 26
-
Scan #48
Page 27
-
Scan #49
Page 28
-
Scan #50
Page 29
-
Scan #51
Page 30
-
Scan #52
Page 31
-
Scan #53
Page 32
-
Scan #54
Page 33
-
Scan #55
Page 34
-
Scan #56
Page 35
-
Scan #57
Page 36
-
Scan #58
Page 37
-
Scan #59
Page 38
-
Scan #60
Page 39
-
Scan #61
Page 40
-
Scan #62
Page 41
-
Scan #63
Page 42
-
Scan #64
Page 43
-
Scan #65
Page 44
-
Scan #66
Page 45
-
Scan #67
Page 46
-
Scan #68
Page 47
-
Scan #69
Page 48
-
Scan #70
Page 49
-
Scan #71
Page 50
-
Scan #72
Page 51
-
Scan #73
Page 52
-
Scan #74
Page 53
-
Scan #75
Page 54
-
Scan #76
Page 55
-
Scan #77
Page 56
-
Scan #78
Page 57
-
Scan #79
Page 58
-
Scan #80
Page 59
-
Scan #81
Page 60
-
Scan #82
Page 61
-
Scan #83
Page 62
-
Scan #84
Page 63
-
Scan #85
Page 64
-
Scan #86
Page 65
-
Scan #87
Page 66
-
Scan #88
Page 67
-
Scan #89
Page 68
-
Scan #90
Page 69
-
Scan #91
Page 70
-
Scan #92
Page 71
-
Scan #93
Page 72
-
Scan #94
Page 73
-
Scan #95
Page 74
-
Scan #96
Page 75
-
Scan #97
Page 76
-
Scan #98
Page 77
-
Scan #99
Page 78
-
Scan #100
Page 79
-
Scan #101
Page 80
-
Scan #102
Page 81
-
Scan #103
Page 82
-
Scan #104
Page 83
-
Scan #105
Page 84
-
Scan #106
Page 85
-
Scan #107
Page 86
-
Scan #108
Page 87
-
Scan #109
Page 88
-
Scan #110
Page 89
-
Scan #111
Page 90
-
Scan #112
Page 91
-
Scan #113
Page 92
Actions
About this Item
- Title
- Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
- Author
- Sacro Bosco, Joannes de, fl. 1230.
- Canvas
- Page 60
- Publication
- Hauniae,: A. F. Host,
- 1897.
- Subject terms
- Arithmetic
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv7283.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv7283.0001.001/87
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv7283.0001.001
Cite this Item
- Full citation
-
"Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv7283.0001.001. University of Michigan Library Digital Collections. Accessed June 1, 2025.