Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
Annotations Tools
51 et est, quod, cum numerus aliquis debet per alium multiplicari, quocumque illorum velit, poterit quis uti pro multiplicando, et similiter quocumque pro multiplicante, quia provenit idem ducendo 6 in 5, et 5 in 6. Deinde cum dicit: sunt autern sex regulace, assignat sex regulas hanc speciem rectificantes, et iuxta 5 hoc ista pars habet dividi in sex partes, ita quod primo dat regulam ducendi digitum in digitum; secundo digitum in articulum; tertio digitum in numerum compositum; quarto articulum in articulum; quinto articulum in numerum compositum; sexto numerum compositum in numerum compositum. Nec io pluribus modis est possibile numerum duci in numerum, sive numerum multiplicare per numerum, et patent partes. Sed quia semper qualibet figura utimur, ac si per se poneretur, ideo sola prima regula est de esse huius speciei. Sed aliae sunt quasi corrolaria quaedam ex prima regula sequentia, sicut videbitur. 15 Quapropter quinque regulas ultimas reservabo ad flnem capituli. Quia igitur tota vis capituli iacet in prima regula, ideo diligenter est notanda. Dicit igitur sic: Quando digitus multiplicat cigitum, subtrahendus est etca, id est, si velit aliquis multiplicare unum digitum per alium, quorum unus est maior alio, tunc 20 videndum est, per quot unitates maior digitus distet a decem inclusive; totiens debet minor subtrahi ab illo articulo, qui ab ipso minore digito denominatur. Verbi gratia: si velis multiplicare 8 per 4, vide, per quot unitates 8 a decem distet inclusive, et constat, quod per duas unitates; ergo totiens, id est 25 bis, subtrahas 4 de 40. Cum igitur bis quater sunt 8, si 8 subtrahas de eo, remanent 32, quod est intentum, quia quater octo sunt 32. Exponas litteram sic: Quando digitus multiplicat digituum, id est, quando digitum oportet multiplicare digitun, altero semper maiore existente et altero minore, subtrahendus 30 est minor digitus ab articulo stae denominationis, id est ab articulo, qui denominatur ab illo digito, per differentiam maioris digiti ad denarium, id est totiens vel tot vicibus, quot per unitates maior digitus distat a denario, denario simul computato, 44
-
Scan #1
Page #1
-
Scan #2
Page I - Title Page
-
Scan #3
Page II
-
Scan #4
Page III
-
Scan #5
Page IV
-
Scan #6
Page V
-
Scan #7
Page VI
-
Scan #8
Page VII
-
Scan #9
Page VIII
-
Scan #10
Page IX
-
Scan #11
Page X
-
Scan #12
Page XI
-
Scan #13
Page XII
-
Scan #14
Page XIII
-
Scan #15
Page XIV
-
Scan #16
Page XV
-
Scan #17
Page XVI
-
Scan #18
Page XVII
-
Scan #19
Page XVIII
-
Scan #20
Page XIX
-
Scan #21
Page XX
-
Scan #22
Page 1
-
Scan #23
Page 2
-
Scan #24
Page 3
-
Scan #25
Page 4
-
Scan #26
Page 5
-
Scan #27
Page 6
-
Scan #28
Page 7
-
Scan #29
Page 8
-
Scan #30
Page 9
-
Scan #31
Page 10
-
Scan #32
Page 11
-
Scan #33
Page 12
-
Scan #34
Page 13
-
Scan #35
Page 14
-
Scan #36
Page 15
-
Scan #37
Page 16
-
Scan #38
Page 17
-
Scan #39
Page 18
-
Scan #40
Page 19
-
Scan #41
Page 20
-
Scan #42
Page 21
-
Scan #43
Page 22
-
Scan #44
Page 23
-
Scan #45
Page 24
-
Scan #46
Page 25
-
Scan #47
Page 26
-
Scan #48
Page 27
-
Scan #49
Page 28
-
Scan #50
Page 29
-
Scan #51
Page 30
-
Scan #52
Page 31
-
Scan #53
Page 32
-
Scan #54
Page 33
-
Scan #55
Page 34
-
Scan #56
Page 35
-
Scan #57
Page 36
-
Scan #58
Page 37
-
Scan #59
Page 38
-
Scan #60
Page 39
-
Scan #61
Page 40
-
Scan #62
Page 41
-
Scan #63
Page 42
-
Scan #64
Page 43
-
Scan #65
Page 44
-
Scan #66
Page 45
-
Scan #67
Page 46
-
Scan #68
Page 47
-
Scan #69
Page 48
-
Scan #70
Page 49
-
Scan #71
Page 50
-
Scan #72
Page 51
-
Scan #73
Page 52
-
Scan #74
Page 53
-
Scan #75
Page 54
-
Scan #76
Page 55
-
Scan #77
Page 56
-
Scan #78
Page 57
-
Scan #79
Page 58
-
Scan #80
Page 59
-
Scan #81
Page 60
-
Scan #82
Page 61
-
Scan #83
Page 62
-
Scan #84
Page 63
-
Scan #85
Page 64
-
Scan #86
Page 65
-
Scan #87
Page 66
-
Scan #88
Page 67
-
Scan #89
Page 68
-
Scan #90
Page 69
-
Scan #91
Page 70
-
Scan #92
Page 71
-
Scan #93
Page 72
-
Scan #94
Page 73
-
Scan #95
Page 74
-
Scan #96
Page 75
-
Scan #97
Page 76
-
Scan #98
Page 77
-
Scan #99
Page 78
-
Scan #100
Page 79
-
Scan #101
Page 80
-
Scan #102
Page 81
-
Scan #103
Page 82
-
Scan #104
Page 83
-
Scan #105
Page 84
-
Scan #106
Page 85
-
Scan #107
Page 86
-
Scan #108
Page 87
-
Scan #109
Page 88
-
Scan #110
Page 89
-
Scan #111
Page 90
-
Scan #112
Page 91
-
Scan #113
Page 92
Actions
About this Item
- Title
- Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
- Author
- Sacro Bosco, Joannes de, fl. 1230.
- Canvas
- Page 40
- Publication
- Hauniae,: A. F. Host,
- 1897.
- Subject terms
- Arithmetic
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv7283.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv7283.0001.001/72
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv7283.0001.001
Cite this Item
- Full citation
-
"Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv7283.0001.001. University of Michigan Library Digital Collections. Accessed May 30, 2025.