Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
Annotations Tools
45 scilicet primum, recipietur, sicut in fine capituli sequentis \idebis in exemplo. Tune sequitur illa pars, in qua docet mediare primam figuram, cum fuerit alia ab unitate, et facit duo, quia primo praemittit quandam divisionem, et patet; et seeundo membra divisionis prosequitur, cum dicit: Si )cp'; et primo 5 membrum primum, et seeundo secundum, cum (icit: Si i:)mpa(r. Ubi dicit, quod, si prima figura significet numerum imparem, puta 7, sume proximum paremr contentum sub illo impari, scilicet 6, et medietatem eius, scilicet 3, pone loco eius; et quia mediasti 6, non 7, remanet adhuc 1 medianda, et ideo dicit: 10 de unitate autem, quae remanet, fac Wut pr)ius, scilicet quando prima figura erat unitas. HIoc autem facto: docet mediare figuras alias a prima, et facit duo. Primo docet mediare secundam, et secundo innuit eundem modum habendum esse in mediando quascumque alias. Et incipit secunda pars in fine io capituli, cum dicit: Et sic olpecrcndtm est. Circa primam partem notandum est, quod secunda aut est 0, aut alia. Si alia, ant est par aut impar. Hanc autem divisionem innuit auctor comprehendens 1 sub numero impari. Facit igitur auctor duo, quia primo docet, qualiter operandum sit, si secunda fuerit 0, 20 et patet; et seeundo docet, qualiter sit faciendum, si sit figura significativa, cum dicit: Si sit significativa, et facit duo. Primo enim docet, quid faciendum sit, cum secunda fuerit par, et patet; et seeundo, si impar. Ibi: Si impnar: adhuc in duo, quia primo docet mediare secundam, quando ante earn in loco 25 primo fuerit figura significativa, et seeundo docet mediare secundam, quando ante earn fuerit in loco primo 0. Secunda ibi: Si auteem cyfra. Ad intellectum partis primae sit numerus mediandus ille 874. Mediabis secundam sic: accipe numerum parem proximum sub 7, et erit 6, cuius, scilicet 6, medietatem, 30 scilicet 3, ponas loco 7; et quia quaelibet unitas in secundo loco valet 10, 1, quae remanet, valet 10. Pro medietate igitur eius addas 5 ad figuram primam, scilicet ad 4, sic 839. Deinde cum dicit: Si autel cyfra, docet, qualiter medianda est secunda,
-
Scan #1
Page #1
-
Scan #2
Page I - Title Page
-
Scan #3
Page II
-
Scan #4
Page III
-
Scan #5
Page IV
-
Scan #6
Page V
-
Scan #7
Page VI
-
Scan #8
Page VII
-
Scan #9
Page VIII
-
Scan #10
Page IX
-
Scan #11
Page X
-
Scan #12
Page XI
-
Scan #13
Page XII
-
Scan #14
Page XIII
-
Scan #15
Page XIV
-
Scan #16
Page XV
-
Scan #17
Page XVI
-
Scan #18
Page XVII
-
Scan #19
Page XVIII
-
Scan #20
Page XIX
-
Scan #21
Page XX
-
Scan #22
Page 1
-
Scan #23
Page 2
-
Scan #24
Page 3
-
Scan #25
Page 4
-
Scan #26
Page 5
-
Scan #27
Page 6
-
Scan #28
Page 7
-
Scan #29
Page 8
-
Scan #30
Page 9
-
Scan #31
Page 10
-
Scan #32
Page 11
-
Scan #33
Page 12
-
Scan #34
Page 13
-
Scan #35
Page 14
-
Scan #36
Page 15
-
Scan #37
Page 16
-
Scan #38
Page 17
-
Scan #39
Page 18
-
Scan #40
Page 19
-
Scan #41
Page 20
-
Scan #42
Page 21
-
Scan #43
Page 22
-
Scan #44
Page 23
-
Scan #45
Page 24
-
Scan #46
Page 25
-
Scan #47
Page 26
-
Scan #48
Page 27
-
Scan #49
Page 28
-
Scan #50
Page 29
-
Scan #51
Page 30
-
Scan #52
Page 31
-
Scan #53
Page 32
-
Scan #54
Page 33
-
Scan #55
Page 34
-
Scan #56
Page 35
-
Scan #57
Page 36
-
Scan #58
Page 37
-
Scan #59
Page 38
-
Scan #60
Page 39
-
Scan #61
Page 40
-
Scan #62
Page 41
-
Scan #63
Page 42
-
Scan #64
Page 43
-
Scan #65
Page 44
-
Scan #66
Page 45
-
Scan #67
Page 46
-
Scan #68
Page 47
-
Scan #69
Page 48
-
Scan #70
Page 49
-
Scan #71
Page 50
-
Scan #72
Page 51
-
Scan #73
Page 52
-
Scan #74
Page 53
-
Scan #75
Page 54
-
Scan #76
Page 55
-
Scan #77
Page 56
-
Scan #78
Page 57
-
Scan #79
Page 58
-
Scan #80
Page 59
-
Scan #81
Page 60
-
Scan #82
Page 61
-
Scan #83
Page 62
-
Scan #84
Page 63
-
Scan #85
Page 64
-
Scan #86
Page 65
-
Scan #87
Page 66
-
Scan #88
Page 67
-
Scan #89
Page 68
-
Scan #90
Page 69
-
Scan #91
Page 70
-
Scan #92
Page 71
-
Scan #93
Page 72
-
Scan #94
Page 73
-
Scan #95
Page 74
-
Scan #96
Page 75
-
Scan #97
Page 76
-
Scan #98
Page 77
-
Scan #99
Page 78
-
Scan #100
Page 79
-
Scan #101
Page 80
-
Scan #102
Page 81
-
Scan #103
Page 82
-
Scan #104
Page 83
-
Scan #105
Page 84
-
Scan #106
Page 85
-
Scan #107
Page 86
-
Scan #108
Page 87
-
Scan #109
Page 88
-
Scan #110
Page 89
-
Scan #111
Page 90
-
Scan #112
Page 91
-
Scan #113
Page 92
Actions
About this Item
- Title
- Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
- Author
- Sacro Bosco, Joannes de, fl. 1230.
- Canvas
- Page 40
- Publication
- Hauniae,: A. F. Host,
- 1897.
- Subject terms
- Arithmetic
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv7283.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv7283.0001.001/66
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv7283.0001.001
Cite this Item
- Full citation
-
"Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv7283.0001.001. University of Michigan Library Digital Collections. Accessed June 1, 2025.