Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
Annotations Tools
17 duplatorum, deinde ductus in se deleat totum suprapositum respectu sui, vel in quantum vicinius potest. Quo facto aut aliquid erit residuum aut nichil. Si nichil, constat, quod numerus propositus fuerit quadratus, et eius radix est digitus ultimo inventus cum subduplo vel subduplis, ita quod praepo- 5 natur. Si vero fuerit aliquid residuum, constat, quod numerus propositus non fuerit quadratus, sed digitus ultimo inventus cum subduplo vel subduplis tune est radix maximi quadrati sub numero proposito contenti. Si velis igitur probare, utrum bene feceris an non, multiplica digitum ultimo inventum cum sub- to duplo vel subduplis per eundem digitum cum subduplo vel subduplis, et redibunt eaedem figurae, quas prius habuisti, si nichil fuerit residuum; sed si aliquid fuerit residuum, tune cum additione illius residui redibunt eaedem figurae, quae prius fuerunt. 15 DE RADICUM EXTRACTIONE iN NUMERIS CUBICIS. Sequitur de radicum extractione in numeris cubicis; unde videndum est, quid sit numerus cubicus, et quae sit eius radix, et quid sit radicem cubicam extrahere. Est igitur numerus 20 cubicus, sicut patet ex praedictis, qui provenit ex ductu alicuius numeri in se bis vel semel in suum quadratum. Radix (autem) numeri cubici est ille numerus, qui ita bis ducitur in se vel semel in suum quadratum. Unde patet, quod numerus cubicus et quadratus eandem habent radicem, sicut dictum est superius. 25 Radicem autem cubicam extrahere est numeri propositi radicem cubicam invenire, si numerus propositus sit cubicus; si vero non sit cubicus, tune radicem cubicam extrahere est maximi cubici sub numero proposito contenti radicem cubicam invenire. Proposito igitur aliquo numero, cuius radicem velis extrahere 30 cubicam, primo computandae sunt figurae per quartas, sive per locos millenariorum, et sub loco ultimi millenarii inveniendus est quidam digitus, qui ductus in se cubice deleat totum suprapositum respectu sui, vel quantum vicinius potest. Quo facto 2
-
Scan #1
Page #1
-
Scan #2
Page I - Title Page
-
Scan #3
Page II
-
Scan #4
Page III
-
Scan #5
Page IV
-
Scan #6
Page V
-
Scan #7
Page VI
-
Scan #8
Page VII
-
Scan #9
Page VIII
-
Scan #10
Page IX
-
Scan #11
Page X
-
Scan #12
Page XI
-
Scan #13
Page XII
-
Scan #14
Page XIII
-
Scan #15
Page XIV
-
Scan #16
Page XV
-
Scan #17
Page XVI
-
Scan #18
Page XVII
-
Scan #19
Page XVIII
-
Scan #20
Page XIX
-
Scan #21
Page XX
-
Scan #22
Page 1
-
Scan #23
Page 2
-
Scan #24
Page 3
-
Scan #25
Page 4
-
Scan #26
Page 5
-
Scan #27
Page 6
-
Scan #28
Page 7
-
Scan #29
Page 8
-
Scan #30
Page 9
-
Scan #31
Page 10
-
Scan #32
Page 11
-
Scan #33
Page 12
-
Scan #34
Page 13
-
Scan #35
Page 14
-
Scan #36
Page 15
-
Scan #37
Page 16
-
Scan #38
Page 17
-
Scan #39
Page 18
-
Scan #40
Page 19
-
Scan #41
Page 20
-
Scan #42
Page 21
-
Scan #43
Page 22
-
Scan #44
Page 23
-
Scan #45
Page 24
-
Scan #46
Page 25
-
Scan #47
Page 26
-
Scan #48
Page 27
-
Scan #49
Page 28
-
Scan #50
Page 29
-
Scan #51
Page 30
-
Scan #52
Page 31
-
Scan #53
Page 32
-
Scan #54
Page 33
-
Scan #55
Page 34
-
Scan #56
Page 35
-
Scan #57
Page 36
-
Scan #58
Page 37
-
Scan #59
Page 38
-
Scan #60
Page 39
-
Scan #61
Page 40
-
Scan #62
Page 41
-
Scan #63
Page 42
-
Scan #64
Page 43
-
Scan #65
Page 44
-
Scan #66
Page 45
-
Scan #67
Page 46
-
Scan #68
Page 47
-
Scan #69
Page 48
-
Scan #70
Page 49
-
Scan #71
Page 50
-
Scan #72
Page 51
-
Scan #73
Page 52
-
Scan #74
Page 53
-
Scan #75
Page 54
-
Scan #76
Page 55
-
Scan #77
Page 56
-
Scan #78
Page 57
-
Scan #79
Page 58
-
Scan #80
Page 59
-
Scan #81
Page 60
-
Scan #82
Page 61
-
Scan #83
Page 62
-
Scan #84
Page 63
-
Scan #85
Page 64
-
Scan #86
Page 65
-
Scan #87
Page 66
-
Scan #88
Page 67
-
Scan #89
Page 68
-
Scan #90
Page 69
-
Scan #91
Page 70
-
Scan #92
Page 71
-
Scan #93
Page 72
-
Scan #94
Page 73
-
Scan #95
Page 74
-
Scan #96
Page 75
-
Scan #97
Page 76
-
Scan #98
Page 77
-
Scan #99
Page 78
-
Scan #100
Page 79
-
Scan #101
Page 80
-
Scan #102
Page 81
-
Scan #103
Page 82
-
Scan #104
Page 83
-
Scan #105
Page 84
-
Scan #106
Page 85
-
Scan #107
Page 86
-
Scan #108
Page 87
-
Scan #109
Page 88
-
Scan #110
Page 89
-
Scan #111
Page 90
-
Scan #112
Page 91
-
Scan #113
Page 92
Actions
About this Item
- Title
- Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
- Author
- Sacro Bosco, Joannes de, fl. 1230.
- Canvas
- Page XX
- Publication
- Hauniae,: A. F. Host,
- 1897.
- Subject terms
- Arithmetic
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv7283.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv7283.0001.001/38
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv7283.0001.001
Cite this Item
- Full citation
-
"Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv7283.0001.001. University of Michigan Library Digital Collections. Accessed May 30, 2025.