Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
Annotations Tools
XVII so fibersieht man mit einem Blicke den Grund ftir die Richtigkeit seiner Bemerkungen. Die von SACROBOSCO etwas sehr dunkel gefasste Erklarung der noveln limites, das ist der Einer, Zehner Hunderter u.s. w. bis 100000000, werden von unserem PETRUS in klarer und deutlicher Weise auseinander gesetzt, und jedesmal eingehend durch Beispiele erlautert. Auch der Grund wird angegeben, weshalb die Rechnung hier Halt macht, obwohl man ja so weit gehen kann, als man will. Den Grund findet er mit SACROBOSCO darin, dass man fiber Korperzahlen nicht hinausgehen konne, und die Zahl Tausendmillionen schon eine so grosse sei, dass niemand im Stande sei, sich eine klare Vorstellung davon zu machen. Im Clm 14684 findet sich aus dern Anfange des XIV. Jahrhunderts ein Sttck:,,Notabile de,,novemn limitibus", das dem Wesen nach mit dem Auseinandersetzungen unseres Verfassers ibbereinstimmt. Bei der Ausziehung der Quadratwurzel aus 9548198, welche er zu 3090 mit dem Reste 98 bestimmt, macht PETRUS darauf aufmerksam, dass SACROBOSCO den hier vorliegenden Fall einer Null als Einerziffer der Wurzel in seiner Darstellung nicht vorgesehen habe. Fiir die Cubikwurzel giebt er zwei Beispiele. Das eine behandelt er nach der von SACROBOSCO gelehrten Art, das zweite nach seiner eigenen Methode, von der er sagt, dass er sie nach langem Bemfihen, die beschwerliche Rechnung k'i'rzer und sicherer zu machen, selbstandig erfunden habe. Sie lehrt methodisch und sicher diejenigen Ziffern finden, welche an zweiter, dritter etc. Stelle gefunden werden miissen, und stellt in dieser Hinsicht ebenfalls einen methodischen Fortschritt gegen SAcRoBoscos Darstellung vor. Besonders beachtenswerth erscheint dabei die genaue Definition derjenigen Kunstausdrficke, welcher er sich nachher bedienen will; Aehnliches ist bei SACROBOSCO nicht gegeben. Die von PETRUS zuerst behandelte Zahl 751089429 hat die genaue Wurzel 909. Wie man dieselbe praktisch auf die dritte Potenz erhob, wird ebenfalls gezeigt, und duirfte sich ebenfalls anderweit nicht dargelegt finden.
-
Scan #1
Page #1
-
Scan #2
Page I - Title Page
-
Scan #3
Page II
-
Scan #4
Page III
-
Scan #5
Page IV
-
Scan #6
Page V
-
Scan #7
Page VI
-
Scan #8
Page VII
-
Scan #9
Page VIII
-
Scan #10
Page IX
-
Scan #11
Page X
-
Scan #12
Page XI
-
Scan #13
Page XII
-
Scan #14
Page XIII
-
Scan #15
Page XIV
-
Scan #16
Page XV
-
Scan #17
Page XVI
-
Scan #18
Page XVII
-
Scan #19
Page XVIII
-
Scan #20
Page XIX
-
Scan #21
Page XX
-
Scan #22
Page 1
-
Scan #23
Page 2
-
Scan #24
Page 3
-
Scan #25
Page 4
-
Scan #26
Page 5
-
Scan #27
Page 6
-
Scan #28
Page 7
-
Scan #29
Page 8
-
Scan #30
Page 9
-
Scan #31
Page 10
-
Scan #32
Page 11
-
Scan #33
Page 12
-
Scan #34
Page 13
-
Scan #35
Page 14
-
Scan #36
Page 15
-
Scan #37
Page 16
-
Scan #38
Page 17
-
Scan #39
Page 18
-
Scan #40
Page 19
-
Scan #41
Page 20
-
Scan #42
Page 21
-
Scan #43
Page 22
-
Scan #44
Page 23
-
Scan #45
Page 24
-
Scan #46
Page 25
-
Scan #47
Page 26
-
Scan #48
Page 27
-
Scan #49
Page 28
-
Scan #50
Page 29
-
Scan #51
Page 30
-
Scan #52
Page 31
-
Scan #53
Page 32
-
Scan #54
Page 33
-
Scan #55
Page 34
-
Scan #56
Page 35
-
Scan #57
Page 36
-
Scan #58
Page 37
-
Scan #59
Page 38
-
Scan #60
Page 39
-
Scan #61
Page 40
-
Scan #62
Page 41
-
Scan #63
Page 42
-
Scan #64
Page 43
-
Scan #65
Page 44
-
Scan #66
Page 45
-
Scan #67
Page 46
-
Scan #68
Page 47
-
Scan #69
Page 48
-
Scan #70
Page 49
-
Scan #71
Page 50
-
Scan #72
Page 51
-
Scan #73
Page 52
-
Scan #74
Page 53
-
Scan #75
Page 54
-
Scan #76
Page 55
-
Scan #77
Page 56
-
Scan #78
Page 57
-
Scan #79
Page 58
-
Scan #80
Page 59
-
Scan #81
Page 60
-
Scan #82
Page 61
-
Scan #83
Page 62
-
Scan #84
Page 63
-
Scan #85
Page 64
-
Scan #86
Page 65
-
Scan #87
Page 66
-
Scan #88
Page 67
-
Scan #89
Page 68
-
Scan #90
Page 69
-
Scan #91
Page 70
-
Scan #92
Page 71
-
Scan #93
Page 72
-
Scan #94
Page 73
-
Scan #95
Page 74
-
Scan #96
Page 75
-
Scan #97
Page 76
-
Scan #98
Page 77
-
Scan #99
Page 78
-
Scan #100
Page 79
-
Scan #101
Page 80
-
Scan #102
Page 81
-
Scan #103
Page 82
-
Scan #104
Page 83
-
Scan #105
Page 84
-
Scan #106
Page 85
-
Scan #107
Page 86
-
Scan #108
Page 87
-
Scan #109
Page 88
-
Scan #110
Page 89
-
Scan #111
Page 90
-
Scan #112
Page 91
-
Scan #113
Page 92
Actions
About this Item
- Title
- Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze.
- Author
- Sacro Bosco, Joannes de, fl. 1230.
- Canvas
- Page viewer.nopagenum
- Publication
- Hauniae,: A. F. Host,
- 1897.
- Subject terms
- Arithmetic
Technical Details
- Link to this Item
-
https://name.umdl.umich.edu/acv7283.0001.001
- Link to this scan
-
https://quod.lib.umich.edu/u/umhistmath/acv7283.0001.001/18
Rights and Permissions
The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].
DPLA Rights Statement: No Copyright - United States
Related Links
IIIF
- Manifest
-
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv7283.0001.001
Cite this Item
- Full citation
-
"Petri Philomeni de Dacia in algorismum vulgarem Johannis de Sacrobosco commentarius. Una cum algorismo ipso edidit et praefatus est Maximilianus Curtze." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv7283.0001.001. University of Michigan Library Digital Collections. Accessed May 30, 2025.