Geometria pura elementare, per S. Pincherle.

24 Geometria piana. golo in A, B; si congiunga AB e su questa si formi il triangolo equilatero (i) ABC; si unisca OC: questa 6 la bisettrice domandata. Inffatti i triangoli AOC, COB avendo OC comune, AO — OB come raggi, ed AC- CB sono eguali (2) e quindi: AOC= COB. come doveva farsi. PROBLEMA 3. Dividere un dato segmento AB per metb. Sul segmento dato si formi il triangolo ABC equilatero, si divida l'angolo C per meta (3) colla G.AD[ A n B Fig. 16. CD; D 6 il punto di mezzo domandato. Infatti i triangoli ACD, DCB avendo AC- CB CD comune, A CD - DCB, (1) Probl. 1. (2) ~ II, teor. 5. (3) Probl. 2.

/ 203
Pages

Actions

file_download Download Options Download this page PDF - Pages 12-31 Image - Page 12 Plain Text - Page 12

About this Item

Title
Geometria pura elementare, per S. Pincherle.
Author
Pincherle, Salvatore, 1853-1936.
Canvas
Page 12
Publication
Milano,: U. Hoepli,
1895.
Subject terms
Geometry

Technical Details

Link to this Item
https://name.umdl.umich.edu/acv2273.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acv2273.0001.001/33

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv2273.0001.001

Cite this Item

Full citation
"Geometria pura elementare, per S. Pincherle." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv2273.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.