A treatise on the theory of Bessel functions, by G. N. Watson.

754 THEORY OF BESSEL FUNCTIONS ALDIS, W. S. Tables for the Solution of the Equation d2y 1 dy ( n2\ (June 16, 1898). Proc. Royal Soc. LXIV. (1899), pp. 203-223. On the numerical computation of the functions Go (x), G (x) and J (x Ji) (June 15, 1899). Proc. Royal Soc. LXVI. (1900), pp. 32-43. ALEXANDER, P. Expansion of Functions in terms of Linear, Cylindric, Spherical and Allied Functions (Dec. 20, 1886). Trans. Edinburgh Royal Soc. xxxIII. (1888), pp. 313-320. ANDING, E. Sechsstellige Tafeen der Besselschen Funktionen imagindren Arguments (Leipzig, 1911). ANGER, C. T.* Untersuchungen uiber die Function Ikh mit Anwendungen auf das Kepler'sche Problem. Neueste Schriften der Naturforschenden der Ges. in Danzig, v. (1855), pp. 1-29. ANISIMOV, V. A. The generalised form of Riccati's equation. Proceedings of Warsaw University, 1896, pp. 1-33. [Jahrbuch iiber die Fortschritte der Math. 1896, p. 256.] APPELL, P. E. Sur l'inversion approchee de certaines integrales reelles et sur l'extension de 1'6quation de Kepler et des fonctions de Bessel (April 6, 1915). Comptes Rendus, CLX. (1915), pp. 419-423. AUTONNE, L. Sur la nature des int6grales algebriques de l'equation de Riccati (May 7, 1883). Comptes Rendus, xcvI. (1883), pp. 1354-1356. Sur les integrales alg6briques de 1'equation de Riccati (Feb. 13, 1899). Comptes Rendus, cXXVIII. (1899), pp. 410-412. BACH, D. De l'integration par les series de l'equation d2y n-1 dy dx2 x dx= 2' Ann. sci. de l']cole norm. sup. (2) III. (1874), pp. 47-68. BAEHR, G. F. W. Sur les racines des equations cos ( cos w) dco=0 et / cos ( cos ) sin2 d = = O (April, 1872). Archives Neerlandaises, VII. (1872), pp. 351-358. BALL, L. DE. Ableitung einiger Formeln aus der Theorie der Bessel'schen Functionen (June 6, 1891). Astr. NAach. cxxviiI. (1891), col. 1-4. BARNES, E. W. On the homogeneous linear difference equation of the second order with linear coefficients. Messenger, xxxIV. (1905), pp. 52-71. On Functions defined by simple types of Hypergeometric Series (March 12, 1906). Trans. Camb. Phil. Soc. xx. (1908), pp. 253-279. The asymptotic Expansion of Integral Functions defined by generalised Hypergeometric Series (Dec. 3, 1906). Proc. London 2Math. Soc. (2) v. (1907), pp. 59-116. BASSET, A. B. On a method of finding the potentials of circular discs by means of Bessel's functions (May 10, 1886). Proc. Camb. Phil. Soc. v. (1886), pp. 425-443. On the Potentials of the surfaces formed by the revolution of Limagons and Cardioids about their axes (Oct. 25, 1886). Proc. Camb. Phil. Soc. vi. (1889), pp. 2-19. A Treatise on Hydrodynamics (2 vols.) (Cambridge, 1888). On the Radial Vibrations of a Cylindrical Elastic Shell (Dec. 12, 1889). Proc. London Math. Soc. xxI. (1891), pp. 53-58. On a Class of Definite Integrals connected with Bessel's Functions (Nov. 13, 1893) Proc. Camb. Phil. Soc. vIII. (1895), pp. 122-128. * See also under Bourget and Cauchy.

/ 817
Pages

Actions

file_download Download Options Download this page PDF - Pages 750-769 Image - Page 754 Plain Text - Page 754

About this Item

Title
A treatise on the theory of Bessel functions, by G. N. Watson.
Author
Watson, G. N. (George Neville), 1886-
Canvas
Page 754
Publication
Cambridge, [Eng.]: The University press,
1922.
Subject terms
Bessel functions

Technical Details

Link to this Item
https://name.umdl.umich.edu/acv1415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acv1415.0001.001/765

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv1415.0001.001

Cite this Item

Full citation
"A treatise on the theory of Bessel functions, by G. N. Watson." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv1415.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.