A treatise on the theory of Bessel functions, by G. N. Watson.

TABLES OF BESSEL FUNCTIONS 739 Table IV. Values of Kn (x) K{ (x,() KK () K0o (x) x. _ _ _......... OI 0'2 0'3 o04 o'5 o-6 0'7 o-8 0-9 I'O I.I I'2 1'3 1'4 1'5 I16 I '7 I8 I.9 2'0 2'1 2'2 2'3 2-4 2-5 2-6 2'7 2-8 2-9 3.0 3.1 3.2 3-3 3'4 3'5 3'6 3-7 3'9 3o8 3.9 4'0 4'1 4-2 4'3 4'4 4'5 4'6 4.7 4 8 4'9 5.0 644889647992[2] 2516402998[2] 980IIOI7[2] 9787687[2] I636838[2] 37918633'59 10996818-69 3758483-72 I4560I8'75 622552-12 288269I12 142544'29 74475'03 40774'60 23240'24 13717'316 8348'321 5220'075 3343-496 2I88-II7 1459-9812 99I'34I3 683-9099 478-7011 339'5354 243'7750I I76-99414 129-84408 96'I715I 7I*86762 54'I5I9I 4III923 3144899 24'2I577 I8-76452 I4-627050 11'465773 9'035174 7'I55283 5'693179 4'549986 3'651659 2'942393 2-379869 I-931814 1'5734796 1-2857868 1I0539552 0o8664794 0.7143624 I0318694975920[3] 20I34817990[3] 522935335[3] 39178686[3] 5243719[3] 1012785182 251904104 75383634 25977933 10005041 4215494'70 1912706-01 923463-36 470026-62 250353-61 138717.80 79569-40 47059'-4 28600-23 17810.48 I337'247 7361'331 4866-694 3270'797 2231-581 1543'7592 0o81I6417 766-8400 '549'6277 397-9588 290-87739 2I4'49I39 159'47366 119-48709 90'17775 68-52285 52-40296 40-31822 3II9792 24 27131 I8-979250 14-913071 II-771986 9-333I22 7'430286 5-938798 4-764583 3-836264 3'099405 2-5I2278 I8574295846304[5] I8I238525941[5 3I3859212[5] 17640197[5] i889376[5] 30421474I[2] 64885309[2] 16998902[2] 5210147[2] I807I33[2] 69269092 28833134 12860891 6083974 3027484 1574292'56 850847 84 475814'46 274293'04 I62482-40 98636-38 61220o41 387710o8 25009-68 16406-92 10931338 7387-939 5059'530 3507-654 2459'620 I743'II74 1247'6333 901 3053 656-7945 482-5358 357'24I3 266-3991 2000162 I5II1457 114-9141 87-87352 67-56482 52-22047 40-56082 31I65296 24-812255 19'533I25 I5'439946 12-252049 9'758563 0 I 0'2 0.3 0-4 0-5 0o6 0.7 0-8 0-9 IO0 I'I 1-2 I3 I'4 I.5 I16 I.7 I-8 1.9 2'0 2'1 2'2 2'3 2-4 2'5 2-6 2'7 2'8 2-9 3'0 3'1 3-2 3'3 3'4 3'5 3'6 3.7 3.8 3'9 4.0 4.1 4.2 4'3 4'4 4'5 4.6 4-7 4'8 4'9 5.0 The numbers in [ ] are the numbers of digits between the last digits given and the decimal points. For example, the integral part of K10 (o-i) is a number containing I9 digits of which the first 14 are given. 47-2

/ 817
Pages

Actions

file_download Download Options Download this page PDF - Pages 730-749 Image - Page 739 Plain Text - Page 739

About this Item

Title
A treatise on the theory of Bessel functions, by G. N. Watson.
Author
Watson, G. N. (George Neville), 1886-
Canvas
Page 739
Publication
Cambridge, [Eng.]: The University press,
1922.
Subject terms
Bessel functions

Technical Details

Link to this Item
https://name.umdl.umich.edu/acv1415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acv1415.0001.001/750

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv1415.0001.001

Cite this Item

Full citation
"A treatise on the theory of Bessel functions, by G. N. Watson." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv1415.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.