A treatise on the theory of Bessel functions, by G. N. Watson.

13-55] INFINITE INTEGRALS 433 and thus we have ]0 fo ei(x+k) Xp —1 2wi*= 2 *j0r epriH (lx) (xer) - e-PriH^(l1 (xe-i)} dx ] (f ei(x+k) xp-i = ( +1)+ [Jf (x) Isin (p + v) 7r + 2i cos v7r cos p7r} + i Y (x) sin (p - v) 7r] dx. In particular, taking m = 0, we get 1 ei(x+k) Xp-i (2) kP-H() (k) = I [r ei+k Xp- [Jv (x) {sin (p + v) 7r + 2i cos v7r cos prr}.TT o xr lk + i Y (x) sin (p - v)7r] dx. If we consider the integral 1 er -i(z+k) 2'-Li J (- z)p- H,(2) (- z) dz, we find that 1 r 00 e~- ($+k),CP-1 (3) kCp-1H(2) (k) = e-(+ [Jv (x) tsin (p + r) r - 2i cos vT7 cos p7r} -iYv (x) sin (p - v) 7r] dx. If we take p = 1, v = 0, we get (4) Jo (k) = 2 si ( + k) () dx, 7. o x + ko 2 fxCos x+c) (5) Yo (k-) = - - co (x) dx. 7r Jo x -+ k( The last two results are due to Sonine*. More generally, taking p = v + 1 and - I < R (v) < -, we get 1 f o' e~i(x+k) Xv ev~ (6) + J, (x) dx = 2 cos v (1) ~ i Yv(k)}, 77iJo x+l 2i cos vw a result also due to Sonine. cos (x 1 k1 '. \ By writing cos(- in (x + k) dt, x+lk x+ k lJ and using the formulae (6) and (7) of ~ 13'42, Sonine deduced from (5) that (7) 2 C'" J(x) 2 i'h'r (7) (7) 2 - o Jo (x) dx + - sin (k cos 0) dO, V/ Jo x+k VrJo and hence from ~~ 356 (2), 9-11 (2), (8) Yn (k) =- 2 0, (x + k) Jo (x) dx + - sin (c cos 0 - n7r) cos nOdO. * See also Lerch, Monatshefte fur Math. und Phys. i. (1890), pp. 105-112. W. B. F. 28

/ 817
Pages

Actions

file_download Download Options Download this page PDF - Pages 430-449 Image - Page 433 Plain Text - Page 433

About this Item

Title
A treatise on the theory of Bessel functions, by G. N. Watson.
Author
Watson, G. N. (George Neville), 1886-
Canvas
Page 433
Publication
Cambridge, [Eng.]: The University press,
1922.
Subject terms
Bessel functions

Technical Details

Link to this Item
https://name.umdl.umich.edu/acv1415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acv1415.0001.001/444

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acv1415.0001.001

Cite this Item

Full citation
"A treatise on the theory of Bessel functions, by G. N. Watson." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acv1415.0001.001. University of Michigan Library Digital Collections. Accessed June 25, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.