Osnovy teorii Galua.

~ 6. Hpucoe~uHenuR. Hamy~pGabnb1 uppaquonaabHocmu 9 95 nlOCTPOHM ypaBHeHl~e, KOTOPOMY yAtOBJIeTBJpsieT 4)YHKLLHfl Z1 = XI X2 + XS X4, npH~aiuiewa~uag K rpynnre (5. 3TO ypaBiieHue TaKOBO (CM. ynaK~~l 29): (51)z3-a2 Z2 +(ala3- 4a4)z -a4 (a,2-4a2)-a.2=~0. H4To6bi rpynria ypaBHeHHIN (5.9) 6b.iqa.elieTeJnem rpyrirnbi (5 10) (HItaH CO0 npH)KeHHOfl C Hleft rpyfinbl), Heofxo1Hmo H4 aioCTaTo4Ho, qTo6bI ypaB~eH~e (5.1 1) ime~ao no Kpa~liHeil m~epe, QA~HH paUtHoHaJlbHblfl KopeHb. B camom jiejie., HCEJIIO4HTeJlbHh1]R C.Tlyrafi, KOrJLa ypaBne~i~e (15.1 1) HmeeT KpaTHbie KOPHH,, BJIeqeT 3a co6ofI paI3eHCTBa THna XI x2 + 4X3~4 -: X1 x3 + x2 X4, T. e. (XI1 - X4) (X2 - X3) = 0, a I1OTOMY 9TOT C~iyqat4 mo)KeT HaCTydHHTi TOJnbKO TorJaa, ecJiH camo ypaBHeHHie (5.9) u~meeT KpaTHbIe KOPHH. COBOI~yrHOCTb n7OJLCTaHGBOK, He H3meH5II0H1UHX HH OILHH H3 KOpHefl ypmeHfHif1 (5.1 1), o6pa3yeT rpynnry 4-ro nOpguuca (Vierergruppe). qro6bI rpynnua ypaBHeHfI4 (5.9) 6wia.eiCiHTeJIem rpyrinbI ~, tieofxoiaHmo H )jOCTaTO4HO, '-To6bI Bice 3 KOPHH ypaBHeHHH (5.11) 6bumT pauLLoHaIqbHbl. Y n p a K H e ii H e 31. HaQTVI rpynny BO3B~aTHio[o ypaBHeHHi1 4-o OH CTerneHH x4 + ax" + bx2 + ax+ +1= 0. Hlola3aTbh, 'ITO 1vi1i TOFO, liro6bi ero rpynnoii ranya 6wina Vierergruppe (wHJJ ee IXCAHTeJqb), Heo6XOJUHMO H j~oc raToqHo, 'qTo6bi '4HCAO (b + 2a + 2) (b - 2al + 2) 6buio TOtqllbIM KBaflpdTONI. YnHp a KH e HiHe 32. Me>[Kny KOPH51MH ypaBHeHHH iueCTof CTeneHH.x6+ a1x5 +a2.x4+ aX3 +a4 2+ a,+ a6= 0 3a2aaHo COOTHOH1e~HHe XI x2 x3 =- X4 r5 - x.- Ha~riir H0OfUI0K rpyrnmi 3T01' ypal3HeHH1R, COOTHOWCnCHue meway ero K034Xp)iiaeHTamH4 iH HpHBeCTH ero peuie~iie K peweiHHKo ypaBHeHiHfl Hti3VIHX CTelI1 Hefi. Y ap a)KHeH H e 33. To }Ke nPH C00THo~uHJCHWX Xl X2 X3 XI - Xs X6. Y n pa KIt eH He 34. HATH rpynny ypaBHeHIHs9 'x + 199g+ x8~1=. Y Ka3 a H ite. YpaBneHHe coxpaHHHT cBoio 4Dopmy, eCtiH mbI 6yaem npOH3BOAllfb B Hem nOACTaHOBKH X f-y- -- H X~zy, ~ 6. HpHCoeAHnetine HOBbIX BeJ1HqHH K o6JtacT paLutOHaJ~bHOCTIH. HaTypa~nbHbie H I1o6Oqtibie Hppatm~Ha~lbHocTH. 1. O6AaaCm paLAHoHaJlbHoc-TH. B ~ 4.5 Mbi pacaplal IIojiHHOMbf c p a IH oH an b Hl l M H4 I(O~frHLLHeHramiH H4 oHpeauJfiJii rpynrny 7a~nya, KBKl COBOK~InHOCTb nOJICTaHOBOK, He HapywiwilHx COOTHOuieHHPI mewaL KOPHRMH4, Hme[oiIIKx aU H LLHH aJIbHbie Ko09J~4jH[LHeHTbi. Bce BbIBOJ~bI Wmor naparpa4)a mowKHo LelJiKOM iiepeHeCTH iia TOT c~nyliafl, Korua K034)cJ)Ht1HHTM I7OJIHHOMOB H COOTHOw~eiimti me}!(J KOPHSIMH mbM.0yeiM C~iHTaTb y)Ke He pa1AHOHaJIbHbMMH 4HcjiaMH, a BJneMeHTaMH oco6oro no~na FR, KOTOpoe mbM B 9TOM

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 77-96 Image - Page 77 Plain Text - Page 77

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 77
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/99

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.