Osnovy teorii Galua.

~4. rpynnia raAya 8 181 OT Xi H Xr.. LtCe1CTBHTenJbHo, niepeBoxwI B COOTHOIIeHHH (4.9') XI. B Xi B X. MN~~~~~~~~~~~~~~~~~4X f(3) = f (Xxi, Xj) (3 Xi) (03 x,) F (Xx8, X,) 3Aecb, jie~aq, a 10TOMY H nipaBasi, tjaCm HmeeT KOPH51MH Xi, x2,.. x2,,n IIpHqem xi H x. - 1CopHH MHO)KIlTeJIetl - Xi H -X1 n~paBOR iaCTH1. 6. O~~~oa~~atA~~I H~~~C3 f~JX1, 2.. Xki ' ~ HeflpHBOaJT.MblI~i B fIOJI E7, K(Xl, X2,..-, Xk - ) JelJIHTeJb IIOJIHHOma f( k), HmeIOILm KOPHem Xk= 14 nU1)oILojmaqllpaccy~ixtae~ne ARw 3Ha'IeHHh h 4, 51... ~lmb y6eamuMCfl B i~onie f(OHILOB, 'ITO A,1 Ball qaCTL) mio6oro COOTHoiIueHlA~ (IVX1, X21, Xv)=0 mo)KeT 65bITb npeaC~aauie~a i cJneapllylnef c3opme: (4. 10) j + f2('E, 2) 2("l P, J +. + r~ae E2,...,) (in 1, 2,..., in) - 1OJilHBO~fbI C palLHOHaJlbHbJMH K0o34 -4WflLiieHTaMH. TaHmm o6paaM KawK2asi JaaH1-asi HOJCTaHOBKa memKJLy KOPH-IfMH XI) X2)..., X. coxpal5IfeT -B c~nie BceBO3MO}K~bie COOTHOweJHH11 mew{JL xj, x2,...5, X., TOr.LL H TOJlbKO Toraa, ecir oHa coxpaH11eT B CHJIe COOTh (4.11) 11~~f(Xl) = 0, f2(x1, X2) = 0, f3(x1, X2, x.3) 0.., fn(x1v, x2,..,Xl, 0. JReBbie 'IaCTH COOT[iomneHflit (4.11) HOCAT Ha3BaBHH-0 OCH 0B HhI X M 0JayTi, e 9 ypaBl-eHHll (4.1 1). OHH1 xapaKrepH~yior rpynnry Iranya B TOM cmbIcJe, qTO KawKJIal nIoJCTaHOBRa npmuaaJ.7emKT K rpyrine ['d.iya ToiUa H TOJILKO Trouta, ecIIH OHa coxpaHll-T B cHJIC BCe COOTHoiuIeHH~1(.1) 1{pome Toro, npolioumal npeuiwaryiume paccywKJeBHHI, MbI y6extHmcs, 4To B rpylnae raiiya 6yaceT cyuie~CTBOBaTb nOJICTaHOBKa, ne~peBoAiuiasai X, B mooflg KO 11H x eAr Ol~l 1~) IeflCTBHTeJqbHO, n1OXCTaBJISIFI B f2(-11 ~2) XtMbI HOJ;IyqHm nOJHHOM, HmoMIflHfl KOPHllMH KaK~e-TO H3 B3ejl14HH X1, X2,, iX2,, OTJ1H 'biBe oT* x,. Bb6Hpasi HI0OH3BOJnbHO mI6pIo 143 liiHX, HaI1PHMep X 2, H1 HO0aCTaBl1Rff B TpeTHfl AIOaJl~b ~j = Xal %2= Xa',,MbIHOJIY4IHM UOA'HHOM; HmemuOifH1 tEopHSmm tKaRe-TO 143 BeJ1HqH1Hi X1,x,. OTnlH4 -Hlbie OT X 2 H x.2 [ipOoaoaaall aaJIorIHLIblfl BbI6op, mhZ npitaem K< nIOJCTaHOBKe Xi BV X e Hapywmaul~efl COOTHOUweBHH (4.1 1) H nOTOMY npiumanewatue K< rpyrrne Fa~nya ypaBHeH14ll (4.1). Floaoito~ne >Ke 3aK.TiroqeH11e mhZ mo)em cateJlaTb, ecdiH OCTaBHM I1eCKOJ~bKO flepBbIX KopHeft, HaflpH-~ mep x1, X2,.-,Xk-l, HeH3meHHb]MH H Ha'I~em ala.jlorlquoe paccy~NgCeie c k-ro moJayJag. 7. OCHOB~nbie CBOiACTia rpynnub ravaiya T eo pe m a 5 1. JJ15a Toro, qTO6hI rpynria ypaBBeHH514 (4.1) 6wina TpaH3HTI4BHa, Heo6xoJLHmO H aTOCTaiOlIHO, tITObOW ypaBneH~e 6wino H~enpHBOoLIHMO. t3'le~OTapmB

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 77-96 Image - Page 81 Plain Text - Page 81

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 81
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/85

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed June 17, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.