Osnovy teorii Galua.

II. rpynna raaya 7. PaCCMOTpH4M cJay'iar, ioraa HeKOTopLJ 113 BeJ1HxHH I?(0) (i=1,.. -paBmbi 31pyr jipyry. H1YCTb 13 TO Bpem51 KaK OCTaJ~bHbie BeHCJIH'HUb (0?) (i " + 1,. nf) He paBHb1.R (Os). Toraa nIoJi4HOM (3.4) paiieH- MA- CTe1ieHH HeOKOTOpor'O HenpHIBOJLH - mocro nlOi HHoma h (t). B camom ateuTe, flyCTb h (t) 6yxaeT HenpHBOJ1Hmbifl noJIFIHOM, KOTOpb1fl HmeeT 1COPHeM ~. Toraia OLIeBHRJHO, 14TO g(t) JIeJHTCSI TO'IHO Ha. m-io CTeneH b h (t) (Teopema 44). HOJoKmmi g (t) = [Ih (t)]9 g, (t), rjc g,(t) B3aHmHo TIpOCTOR1 C hz(t) HOATHHOM. 1o2Ka}Kem, 'ITO gj (f)-noc1.To0AHna5.Be uquna. TJIOVyCTHB HpOTHBHoe, 6yaeM B CiHiY 4~OPMYJlbl (1w3~) leTb: r~e 11t Ii V (t)-no.TrnHoMbl. fHOJCTaBni5151 t R(X), Io~nyqiu4M: BmeCTC C TeM g1 (t) HmeeT B CWT1Y (3.4) KopeHb I,,l1aa ~ B clu1y uero paUyloHan1Haq q)YHKlUMI (Boo6nte FOBOP51 Itpo6Hasi) g, [R(X)J ic0Ai}1Ha I4meTb B 'IHCJIHTeJIe HOIIHOM, Hmeo1IHA c f (x) o6nut1 icopem Q, 14i r11TOMY B cHJIy HeHR14BOAitMOCTI 1(X) H Teopembi 44 aeisiuMHcOI uHa f (x). B city 3T0F0 g, [R "Q)] 0 (i = 1, 2,, n). TotIHO Talc )Ke Jocalwem, 'ITO h [1? (%)1 0 (i =1, 2,.. n'). F10,CcTaB.lwi 13 (3. 5) x Q.rioj-!yql'M 0 =1 T,. e. rHpOTHBopeu1Fe. OTCioaa 3aL(JL aei: Teo p e ma 48. Ec~im OP 02 2'~' Iit — Ko~ HernpHBOJL1MoI'o no0111 -iioma f (x), a R? (x) - pa1Xuoi1A.TbHa1R (~yHKLtU4 (3ria-,.eilaTeJnb icompOil ii0 e TieiMTCSI Ha 1(x)), TO nIO JHOM (tR-I (01)) ( -~ RI 024).. (t-R,EC "Ib C TeI71Hb HerlpHB3OLLMOI'O HORTiHHoma. B Cgiyqaa- III>I Bien iwiua I?(% POM3BOJ1T He Bce non'e, a TOibRo ero Hacfb, AI~I, maiCMbi16y;,iOmfrOBOp11Tb, a e 14 TeJb HO 3151. 8. T c o p e m a 49. Ecuw 0 Hn14MHTIMB13bIft 3J1eMeHT HOJIS CTeneHHII U1, TO BCR11Ht1 3JemeHT -3T0P0 rioJW m0K110 -1npeLCT,'1BHTb B MaeJ~ HohIHoma C TeJimli He B~bJill n - 1: eeo Ch(dprbiHeuIOHbi (to, Ci.1.,__ paLLHOHaaTbHbie 'JIcJna. 3TO npexaC Ta3jieHHe ejHHCTBeHF1oc. }i O a3aTeJnbCTBO. 10. I1ycTb memeMHT MOISI 3aJ1aH B BHLLO ( = rXte r~ (x) IiM x B3a1IMH0-Hp0CTbie 13011313MbI (imatie,po6b MO)KHo 6b111o 6ul COKpaTHIb). HlOJItHOM r~(x) )TO eiiO 6b1Tb B33131MH0 HpOCTb1M C f(X), TaK KaK HHaHe 3HaMeHaTOJb xcpofi o6palua1cq 6Nl B Hy~ib, Hi apo6b HmOna. 6bi -6ecKOHe'qiHoe Maqaemue. HO03TOMy 14 B CH1R d~opmyjuim (1.3") IHMeeT meCTO II (xf(x) + v Wx) ~(X) -

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 57-76 Image - Page 57 Plain Text - Page 57

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 57
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/78

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.