Osnovy teorii Galua.

II. Fpynna raflya 113 9TOgR Ta6jHiuabL BRIFUO, 'ITO y)Ke BTOpbIe pa3H0CTH iaaiOT HOCTO$HHHYIO BeJIlH'H~Y OTCiolta careiiyeT, 'ITO BbI6paHHbie namHl Ae.UHMTUJH 'HCeq /(Xi) qflBA OTCH 3HaIeHHIjjmK fieHoTOPOro KBaUtpaTH'IHoro HOJII4HOma. CTpOHm ero no cpopmyjle Jlarparnica 14 n~oJny'cm: y (X) =x2 - 3x+ 4..IVII oIKOwaTeJ~bHOrO KOHTPOA15.iejinm f (x) Ha yp (X), 'ITO ataeT Ham: X5 -5X4 +13x3l- 22X2 +27x- 20 = (x - 3x+ 4) (x3- 2X2 +3x -5). 7..LJ2.n1 HaxomaieHmi paiuHo HnalbIX llejITeJneh IIOATHHOma MO)KHO npeiiAO)1(HTb enme llpyroft npipem. IIMeH Ho, eCJI H HOIIHHOM f1(X) HmeeT' MHOWHTejib U-9 cUerne~i C paIlHOHaJlbHbIMH KO394)JciJH1-eHUaMI, TO, o6O3HatIHB emo KOPHH 1KOTOpbie IIBJIIIITCf Ta1Kwe KOPHf1MH HOJ1HHOma f (X)I 'iepea X,, X2,..., xt 06paTHM BHHmaHHe Ha TO, 'ITO BC-% 3JIemeHTapHO-cHmmeTpH'IeCKHe 4)3YHKUHHI Tly1 X2,..,X,~ l pal~joHaJIbHbie qHcna. yCb =4 Xx2,..,Xd) 0y~iIeT OJIHa 13 TaKH4X 3JnemeHTapHo-cHmmeTpH'IeCKHX (pYHKLLHkA. HpOH3BOaR~ 6a~a BeJ14I1Hq~mH X1, XC2,...,- X.~ BceBO3M O>KHb1e nepeCraHoBKHi cHmmeTpjtqeCK0Of 1-1pynnfbI nopSIua tt! (T. e. 3ameHqq5 H X BcemH BO3MON(HbiMH nyT51MH q-epe3 Xb, x Xw Xux-, x 1,., X,), Mbl noRiy'rM s=C nla) paJIH'HbIX 4)YHKIUKA Ro~p44utuieHTLI H0Jh4Homa UnB.I~OTC51 cHmmeTp1-14eCKH14M 4YHK[LfH15MH OT XI), XC2,. Xit K U1OTOMY paituoHaJlbHO BblpawaKl1TCSI 'epe3 Ko3(frdp4utieHrhI noj1HHOM'a f(x). BblqHrnH~B 9TH K0.34)Hi44eHTbl, MU IlprneaeM Bnopoc IC Haxom(JeHHIO parltOHa~ibHblX KopHefl IIOJI1H~oma F(~). B camom llelie, 3Haff pajH04HaJ~bHbie KOPHH XLJfI Ka}KTLOrO 143 ypaBHeHH fl, C00TBeTCTRy1O IlHX Bcem 9JIemeHTapHO- CHmmeTpH'IeCKHiM 4)YHK1U451M OT KOpHeft H4CKomo1ro nIOJIIHoma, mM ceft'Iac w~e rnoJy'laeM H1 cambltt rIO.IHHOM. S. KpHTepHH' HeTIPHBOllHMOCTH 343eHuJTeflHa. HlpHBelleHHb~tl B ii. 6 pHpmep y6eau-A HaC B TOM, 'ITO HO.Tb3OBaH~e o6wiitm i1pHemom aniq Haxo}KgeHUSI paiUOH3JabHbIX MHO)K14Teieg1 InojiHHOma BcTpeqae~T Ha I1paKTHKe 6o0rlbluHe 3aTpy~aHeHH%1. B BWay 9TOI-0 B a3Hoe Bpem14 6biuo, npe~iioweHo HeCKO.TIbKO 'IaCTbI~X KPI4TepHeB, HlO3BOJ1LO5t11UX B HeKOTO~bMX cuiyqanx y6ewaxaTbCf, 'ITO llaHliblft IlOJIHHOM HernpHBOJLIM. fHpHBeJaem oatHH 11 3 TaKlIX KP)HTe)HeB, HpHiHaxuiewatutifl 3fl3eHUmTeAHy (Eisenstein): T e op ema 43. ECJIH4 Bce KO34Xj)HL~eHiTlMlOIlHHoma J(x)~ao + a~x +.+a ix- +xn, Kpome F1ocJ1ieHeUo a,,! 1, JLCaliTCH Ha KaKoe-HH6yl~b nIpocroe qIHCJlO PI, HO1 IP14 3TOM rrep~bl KOB44WWjueHT ao He JIeXIHTC5I Ha 1)2, TO HOJ1HHOM f (X) HeHpHBUaliM'. ]110OKa3aTeJq b CT BO. LLOrnycTHm npOTHBHoe, T. e. rnyC~ HmeeT meCTO pawio}effle (2.4) ao+ alx +.+a X fl' + x1= -(1'e + bix +.. + bu x' 1 + (W) (co + cl-x +. +c 1X v + xe),

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 57-76 Image - Page 68 Plain Text - Page 68

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 68
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/72

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed June 17, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.