Osnovy teorii Galua.

~ 2. Hen pU6.!9ul~be llOAU1iOibl 65 Torjjaa ii~ ~ ~ ~ ~~~i D (F) = (F, F') = ~ [f (xi) g(x,)' Fl [f (y1)g(y1)1' = 1 H [(xi)g'(xi) 4-f'(X1)g(xM) H If 0ylg'(y,) +f'(Y,)g(yi)] OTKyJaa B CIiMY f (Xi)O 0 ii i)~0.(1.13) D(F) =~ Hg(x1)._HJf(xi) -_Hf(yi)._fl g'(yi)= =~R(f.f'). R(gjg') R(fjg) R(gjf), JIMH (1.14) D (f -g)= D (f )D (g)J?2(fl g). B 3TOfI cjpopmyJe Kawa~bifl [13 JLHcKpMiniwiaITOB H pe3yJlbTaHTOB npaB3oA MaCTH eCTb Laeiaaf pa[u4OHaJbHwi 4)YHKR1J51 C. u~ejuimli K034)KPH[LieHTami4 OTr K~o94qHIu~eHT0B HOJIHOMOB f(X) H g(x). H/3 Hee cJneayeT, 'ITO KawfIbflk [13 MHO)KH~eJnef npaBOfl MaCTH eCTb aTeJIHTCeb MiHcIa D Uf. g)... Popmyna (1. 14) aoriyCiaeTr HPOCToe o6ofuierne Ha c.jiy,4aft npOH3BeJLiHHlff MHOi'X F1OJIHHOMOB. HmeHHO, noniaraq F(x) = f1(x)f2(x)..., fj~x), mbi rIOJly'IHM: k (1.15) D(f1.f2.fk) ~ HD(fj).HR2(ff) ~ 2. H1pHBOAnmbie H He1piiBOA~HMbIe IIOJIHHOMbl. 1. nHo.wre HeInpHBOAHtJMOCTH. B TeopHH raiya.9BJII1eTC51 OCH0BHb1M I1OH51THe rHplBO01RHMOCTH14 HeripHBOILH4MOCTH IojiLHHOMOB, TaK WIO Ham Heo6XOJ1HMO Hay4HTbC%1 npHnHOMO[LLH KoHeqHoro liHnla JaeFlCTBHfl pa3 -JIH'IaTb, R1BA~f1TC51 All Ka)KJUbIfl 3aJaaHHbifl nIOJ1HHOM 11PHBOA1Mb1M 14,11 BeT. PaCCMOTpHM C~tin HOJIHiHOMbl C patuiHaHJ~bHb1MH K0344n[lMHeHTamH. Hlo.IHHOM Hu3bIBaeTCf1 nIp H B0 RH M blm, ecJii ei-o MO)KHo HpeJLCTaBHTb, KaK flp0H3BeJaeH~e IIoJIHHOMOB C. pa~uHoHa~nbHbM1Mn K03(44HpiuteHTamH4, KaxKJabfi~ [13 K0TOpbIX 6wi 6Mi 6oniee HH3K<0fl Creneffl. EcJIH Ke 9TO HeBO3MO)KHO, To nloAWHI-1M Haub1BeTCR1 HenpHBOJIHM~blM. 2. ]J~Jr HaxOueKJlfHH1 UiplemOB, nO3BOJIHIOLILX npH nomoHJ" KOHCL1HOP '1HcJI AeA1CTBHiM pa3JIH'laTb HpHBoJJJ1mb1e H 11jcrIpHBOJU4mbie HOIHHOMbI, BbIrO,1HO nepeAT1T K n1oJ1Hffomam C 1LeJbIMHi Koa43HLUieH~aMH. Toro MOWKHO jierFo 'OCTHrHyTb HlyTem YMHo)KeHHI rTIOIH~oMOB Ha o6umil 3HMamHaTuIb Bcex KO34X(3HuiieHTOB. Kpome ToIro, yao6Hee HimeTb aeJIo C HoiJIHomamH, y KCOTO~bIX K03(~4Hl14HeHT npH CTa1pL1eM TuieHe pa~eH eAtHHHLue. HlTO6bI repetiTH OT [IPOH43BOJIbHoro ugjioqtcnceHH~or nOJIHHoma K L1jeJIOl4HcJ1HHomy nol0H-OMY CO %-TapUlHiM K0-4cJ)(iHLHeHTOm eJLHHHLua, caeie'aem B Hem n10JCTa1HOBKY y= -a- a 3a~em YMHO>KHM 3TOT [IOJIHHOM Ha A. n-il Hlony= nII, 4HITCR nOJ1HHOM Tnna (2.1) ao ~alx + *. +a x1 + x'. 5!e6oTa-pen,.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 57-76 Image - Page 57 Plain Text - Page 57

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 57
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/69

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.