Osnovy teorii Galua.

~ I.- Ilcxodt e cf3axmb16 63,Lowi>KeH 6bvrb CHmmeTpHi4teci~oR~ c~yHKLLHeft. ByJ~y' 1H BmeCTe C Tem IL en or 0 i paUHOHaJ~bHofl (PyHKILHefl, OH To)Ke yiiOBnTeTBopqeT YCJTOBiqm HepBOI 'laCTH Teopembi. 30. FlpejriOJIO)K~Mt Tenepb, tITO [LeJna5 paIUKOHaJbHu5 c~m~iie~s 4~yHKU-HR HimeeT LueJibie paILHoHaJybHbie KoB(~dpiiui~eHTbl. Tor~a onIHcaHHble B 10 onepa~uJH He moryT c~ejiawb nlojiyaei~bIX K0o34HiiutieHTOB alpo6HbIMH. ]iJeffCTBHTeJ~bHO, mOJIJ1 KoHm iimeIOT B K~aqeCTBe KO34)p4HiLieHTOB HPH CTeIneHSiX X ileJibie paLLHOHaJlbHbIe 4j)yHKIIHH OT KOPHeA al, ct~,...,- ot c J4teJibimH pawi~oHaJibHb1MH Ko3CfrPWLieHTamH H4,Kpome Toro, eaLHHHI4U HPH CTapwelel CTenH HH X. HO3TOMy npH o[IHcaHHbIX B n. 10 nipoijeccax )ieCJeHRRf KoqdcdiXi4LLeHTbl aeJiHmbix H are~nHTe~neft npe~epne~aioT HCKJ1IOqHTeJqbHO ornepaI4H cjio~xeHH5H, BbI4HTaHH5I H yMHo}KeHHHb, H TaKHM o6pa3OM OCTaIOTCSI BCe BpeMHi ueJnbimH. fHO0TOMy, B 9TOM cnyyiae 4~yHKUIWIf V Bbipa3HTCq qepe3 OC1, ca2,..., c", geniott pa~l4oHanibHO1 cPyHK[LIefl C ILaabIMH paLLHOHaJbHbIMH mo344HLLiieHTamH. HpHmep. /(X)>=zX3A-aX2-I-bX+C= (X-a)(X ---,(X —y), V- a2+pl+y2.. 'IMOayJUIH 1~01111 Tawoibi: X- x3+aX2+bx +c, X,=x2 +(a + a)x+(a2+aa+b), X2 = X~+(a+P C) 3amenmm B BbIlpaKeHHH V 6yKBY T Ha X H pa3JAeJHm ero Ha X2. I10JIyqHM B OCTaTKe a2 ~ P2+(a + P +a)2. 3aMeirnM B 3TOM BbipamceHHH p Ha X H pa3),aeHm ero. Ha X2. 1OJ.qyqHM B OCTaTKe: a2- 2b. CIOJa a He BXOJLHT, TaK tITO 3TO H HnpeACTaBJISeT co6orl HCK0moe Bbi~a)KeHHe V qepe3 a, b,c: a2~+P21d- 2 = a2- 2b. Y ni p a >R H e H Hi e 22. CoxpaHRR Hpe}KHHe 0603HaIerilHf,.aoKa3aTEb, 'iTO a2p + a~2 + P2rT + PT2 + y2a -H T'2 =3c - ab. Y Hi p a x< H e H H e 23. BbI'HCJIHTb JAICKpHmHHfaHT npebi~~puiiero ypaBHeHHI,, T.. e. BbupaNCeHHe D P= ) y-a2 7. Pe~y~iwraHT. 3aataHbI JBa IORIlHHoma: (1.6) f() ( x)(-X) (-X H (1.7) (X (X Y)(X Y2 (X Y - BbIBeaem YCJIOBfHg Toro, 'lTo6bi OnH HfmeJIH rno Kpat1Hefl mepe OuaH o6aHRKopeHb. JiIJ15I 3TorO Heo6XOJaHMO H JIOCTaTO4HO., 'ITo6bJ Bblpa)KeHi~e (1.8) R (fgP= f (YI)f (y2) f (Yin) o6pam1a~nocb B HyJ~b. Bbipawea~e (1.8) HOCHT Hm3BiHH p e 3 y JI b T a H Tra IIOJIHHOMOB f (X) H g(X). 5IBJISHCb cHimmeTpH'lecKofl 4~YHKIuaet T RorKpie1k nO.IHHoma (1.7), pe3yJlbTaHT mo)KeT B CHJIy Teopembi 41 6blmb HpeJLCTaBJneH, KaK tte.imi paUHOaoaab~aaf (PYHKIXH5I OT KOS94X4)H4UHeHTOB s9Toro rbOJHHOma, B Bijpa)ICeHHe KOTOPOrO BXOART Talowe KO~dp43HwiLeHTM flOJHHoma (1.6).

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 57-76 Image - Page 57 Plain Text - Page 57

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 57
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/67

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.