Osnovy teorii Galua.

~ 1. I-Icxo~nbie _Oa~cmbl 5 go Ha OCHOBaHHH H3BeCTHOfl CBB3H mewaJy aeAIHMEIM, JlJHTeJnem, qaCTHb1M Hr OCTaTI{Om 6yaleM HmeTb:' 1(x) = g(x).- q1(x) + -r,(x), (13) ~~~~~g(x) =r1(x). q2(x) + r2(x), r2(x)== rm1(k~)qj(x) + rm,(x),' rm 1(x) = ral(x)qm + 1() AJoKawem, WIO nocejwiea~f atrejiH~~l [B naCTORIJLuem cjiy'ae rmn(x)I RBnqeITC5I KaK pa3 o6L1IHM HaHi6O.TlbdlHM aeJIHTeJ1em nOdHHOMOB f(X) H g(X). '-Iro6bI JaoKa3aTb, WIo rrn(x) eCTb Jaenlff4eJb /(X) Hi g(x), 6yxaem, HO.Tlb3yfICb rHOCTeHeRHHO BcemH paBeHCTBaMH (1.3), Ha'IHHasi C H H iK ~er o, y6e)vaaTbCg B TOM, 'ITOrm~x SIBHI~T~I J~JIH~JIM r- ()rm -2(x),.. r1(x), g(x), fAX) C atpyroft CTOPOHbl, XLonwaem, WIO BCHKHfl HOJIHHOM, HBROH1HMIAC5 OJLHOBpe? meHUHO JAejiHTeiiem f(X) H4 g(X), qBBJI5eTCf TaKweC LeJH4TeJ1em rm(x). LIjwi 9Toro, flOJlb3y5ICb noc~JeaJOBaTeJlbHO BceMH4 paBeHCTBaMH (13,Ha'HHa~i C B e p XH e rO, Mb y6extHMC5 B TOM, 'ITO 9TOT nIOJHHOM 5IBJIqeTC5I J=IHTeJnem nOnHHOMOB r1(x), r2(x),..., rmi,_ (x), rm(x). TaKHM o6pa3oM mu y6ewumcff, 'ITO o6miH4g HaH6oJ~bU!HP1 aeJIHTe.Jb A]BYX nIOJHHOMOB mo>KeT 6Mmb HaataeH n1yTem paHJ4OHaJlbHMIX ornepautifl. OTCioJaa B CHJIY CKa3aHHOI'O B II. 3 mbi 3aKinio'Iaem, 'ITo eCJ1H HaM 3awLB HIOJIHHOM, couep}~aauin KpaTI-bie KOPHH, To ero MO)KHO rnpH nomofLUH paU.HOHa.TlbHbIX onepautHft pa3JIOKHC1Tb Ha MHO)KHTenTH, KawKabifl H3 KOTO~bIX yiKe He 6yAeT coJaep)KaTb, KparHbIX KCopHefi. B STOM Ham 6bwio Heo6xoJLHMO y6eaHTbCS] JVH TMF, 'ITO6bi rnpl H3JIo}KeHHl OCHOB TeopHI4 rajiya HmeTb ripaBo H-peiJIoJIaraTb, 'ITO ypaBHeHHe He HmeeT KpaTHbIX KopHefl. Bbipa3H~m rmx) Ha OCHOBaHHIH np~ice~r paBeHCTBa (1.3) 'Iepe3 r ~1(x) H r___X) rmX) = rm - 2(X) - qm(x-) ' r., - () 110OXCTaBHM B 3TO paBeHCTBO Bbipa}KeHHBs rm, - 1(x) qepe3 rm - 2(X)H rm,, _ 3(X) Ha OCHOBaHHH4 npajC~i~tr paBeHCTBa; Torjaa flOJIT'Hm OAIHOPOJ~LHoe J1HHeflHoe BbipaxcH{HH rrnx) tiepe3 rm._2(x) H rm, _(x) C HOJIHHOmaMH OT X B KaqeCT~e K0OBHWluIeHTOB: rm(x) = 1+ q,, _ (x)q,.(x)] r - 2(x) -qm(x)rm rHOCTyfIaqI Ta K~ Ce c peaweHCTBYLO[1HM paBeHCTBOM, BMbi3Hm rm(x) qepe3 rmn 3(X) H rmn - 4(X), H T..iX. H1puonwoaf rpoiugcc, MM B KOHLLe KOHILOB rHOhiy'HM 4~OpMYlY (1.3') r,.,(x) -u(c).1(x)+ v(x).g(x), rM u(X) Hi V(X) - OAHHOMb] OT X. B 'IaCTHOCTH, ecaHr f(x) u4 g(x) BMaHMHQ-rnpOCTMl, TO mbi 6yJ~em HmeTb (1.3"t) u (X).f (X) + v(X).g (X)=

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 57-76 Image - Page 57 Plain Text - Page 57

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 57
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/63

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.