Osnovy teorii Galua.

~ 7. Pa3pelUUfbibe epynnfbl 5 51 2,. p-1 Mb! HOayqH4M Bcero PpG - ) THHetRHb1X nO0LCTaHoBoK. Bce OHH COCTaBJiIIUOT rpyriry. J1eft.CTBHTeJ~bHO, (x — >ax + b)(x -> a~x + b) = (x — >al(ax + b) + b.1) -(x ---->aalx + alb + b1). ECAHr a H al He aeLj1ilTC5H Ha P. TO H IPOH3BeAefHHi aa1 He 6yaeT xteJIHTbCSI Ha p. O6paTHa% K noalCraHoBKe (x — >ax + 1) FIOA1CTaHOBKa mOM(eT 6bl~m HaflJaeHa, ectir MbW pewHIm cpBHeHHe y -ax +b (mod p) OTHOCHTeJnbHO X. ULI~f aToro YMHO)KHM cpaBaeH~e Ha a', riae a' - 'iHcqio, YI0jeBPIoe cpaBHeHHio ad'= 1 (mod p). Tor~aa no~nytimi: x a' y - a'tb (mod P), Ta1( 'TO HCKomag o6paTHasi HnLLCTaiHOBKa 6yaeT HmeTb. BKAI 1 0. HlTaK, BCR1Kas paapemn~mag rpynna CTerieHH P AJEOJKHa 6bITb jternTeJ1eM TOJIbKO-'ITO or1HcaHHft~ Fpyflib1 nopsiiiia p(p- 1), KOTopa51 HOCHT Ha3BaHHe IHOJIHOfl meTaUHJi4.IHqeCKoR (Hrii nOATHOtI 1HHeRHOfl) rpynnbi.,LJoiawem, 'ITO nojrnasi meTaLLHKJ1WIecKH5 rpynnia pa3peiwHma. EIjis 9TOro o6paTHM BHHmaHHe Ha TO, WIO 3Ta rpynna (6yaem noHpe>KHemy o6o3H3'IaTb ee qepe3 0) HmeeT iLH KaJ1H'ecCKlHf HopMaJlbHblf ejl JLJeHab ~. Hamue YTBepH(,eHfle 6yateT LoiKa3aHo, ecJIH mbi noKa}Kem, 'IO JtonlOJHHTeJ~b1Ia% rpynna 3/52 pa3peLHHma. ThIH 3TOrO Mb! pa3JIO)IKHM rpyriny 05 Ha corlpaxeHHbIe CHCTembi no. B Ka4eCTBe SJIemeHTOB A2, A31,.. Al BO3bmeM nIOACTaHoBKH THna (x —. ax). TaKHM o6pa3oM 3To mb! Hmeem ripaBo cIaeJlaTb, TaK KaK Bc~ e oa1CTaHOBKH conp14}KeHHOR CHICTembI S2Ak Hme1OT BHJA T. e. HIMeIOT IIPH X OILHHl H TOT we~ Koq44HLuHeHT k, B cHJIy qeiro pa33JHt1 -Hue conpHgKeHHbie CHCTembi, timeiouLLH pa3JIHtiHb1C 3HalqeHHlI k, He moryT 1HmeTb o6uLHx BJnei4eHTOB. HeTpyliHo BIVaeTb, 'ITO gj1emeHTbl J, A2, A3,.., A2, COCTaB.TI5OT fpynnfy,, KOTOpa~i o'IeBHRJHO 143oMOp4!Ha c.aOonJ1HHTeJ~bH~fl rpynnofl 05/2. BmeCTe C Tem ara rpyrmna (cm. (7.3) ) H3omop4)Ha c rpyinnofl B3aHMHO-rjpOCTbIX C p KJIacCOB cpaBHeHHfl no moyJLiJo p OTHOCHTeJlbHO YMHo)iKeHH5I. Mwi yiwe BHXLeJHH (~ 6.3)., 'ITO STa rpyrina JJIHKJIHq4eCKaHi. OTCioaa cJae~yeT, WIO rpyrina (0 pa3peiuHma. B C14Jy Teopeubi 35 pa3peU1HMa TaKX{e BC.9aq ee no.~rpynna, H MWl I1PHXOJUHM K T e o p e m e 37. TpaH3HTHBHaHi rpynna. nOJCTaHOBOKC CTene~HH P, r~ae P - ripoc~oe tIHCJIO, paapeln~Ma Toriaa 14 TOJnbKO TOUUa, ecJIH ee r1OACTaHOBKH moryT 11pM HajeKaxt HymepaUHH 1HC1pp 6blTm npeAz,4*

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 37-56 Image - Page 37 Plain Text - Page 37

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 37
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/55

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.