Osnovy teorii Galua.

~ 7. Pa3pewubiue epynnlb 4 49 7. HlOCTaBBHM B camom O6fleM BHJLe BOHlP0C o6 aHaAHTHqecKom rH p e A C T a B JI e H H H nOatCTaHOBOK CTeneHH P. 3Tro0 3HaqaeT, tITO JAaR KawK2oft 3aJaaHHofl nOICTaHOBK"l ( 0, 1, 2,...,p-1' a0,, a2.a_, ) MbI 6yanem HCKaTb TaKOtR [IO.THOM f1(X) C LuejibimH paLIHOHaJlbHMLMH i<0o(4 -4~HixvueHTamti, lOTOpbifl 6bi yJLOBj1eTBOP5UI YCJIOBI1HM (7.2) 1(0) ==do f (1) ', f (2) == a, J(P - 1) o (mod p). He TpyXWO y6eaiuTbcS] (B r.TaBe 1I, ~ 1.5 Mbl OCTaHOBHMC5I Ha 9TOM no~iipo6Hiee), 'ITO aTHiM YCJIOBHH1M YRIOBq eTB0p51eT nIOJIMOM (P -I)-OR (HiqHi HHNKe) CTeHeHH AX) F~~~x) + J p+ -+ 4(mod P), ruae F(x) == x(x- 1)(x - 2).. (-p+1). CTOR'ijiue B 3HMamHaTeJsix 4HClcla F'(k) (k = 0, 1 p p-i1) paBlibI F'(k) =k(k-1)... 2.1.( — 1).( -2)... (k - p+ 1)= (lPk k! (p —k+1)! 3TH.3HameHaTeJH eJil~J~OT Ko09t~i4j~lHeHTbi I1OJHHoma f(x) upo6HbzMH; HO Bce OHH B3aHMHO HPOCTbl c /3, a HOTOMV cpaBHeHH5I XROI1YCKaI0T peLLeHHl B 1aejlbix '-iiciiax. EcniH Mbl, nOJlb3YfCb.3THMH pewneHHHMH, BO3bMeM B KaB4eCTBe f(x) IOJUiHHOM C iienbimi Koq4p4JHiuueHTaMH F(X _oX __+ alXl ot1xp-1l x x - 1 ~ x-p-t- TO MTT HOJIMHOM T0oKe 6yueT YAOBJIeTBOPR1Tb ycJ1oBH5Im (7.2). CTatiesi 3aHncl4IBaTb T1OJCTaH0BKH 0,1 2 J. -P 1 B TaKom ii3He: (x ->f x). E cuiu 3aaaHbl B aHajiHTH'IeCKOM BHJLe RBe nOaLCTaHoBKHi: (X — >f(x)) H (X-o>(P(X)), TO MiX npHBa~i (-fx)x-> ())mo)KT 6bl~b rpextCTMBJ1HO, TaK: (x - cp (f(x>)). B camom aenre, ecuii (x ->1(x)) nepeBOJLHT a~ B P3, TO f(c() --- (mod p), H eCnrm (x -o p(x)) flepeBOJJ2T [3 B y, TO (9 ([3) == (mod p). OTCioaa cuieayeT, WIO (P (f(ci)) cpE (P3) _- (mod p), a nOTOMY nOJLCTaHOBi%, (x, y (f((x))) [iepeBOA1HT (X B T. 3To noua3bIBaeT, 'ITO flOACTaHOBKa (x — > c (f(x))) eCTb npOH3BeJLeHtH nOJ1CTaiHOBO1( (f(X-X)) H MoxKiO, HOHLI3HTb CTCIIeHb HOJIHBoma y (f&)), pn3JLnll4B ero Ha F(X) H B351B OCTaTOK( CT 3ToFo JteJIeHiSI. B camom aejie, F10,ILIHOM F(X) HplHHHmaeT flpH 3Ha'IeHimIx x =O0 1, 2,.... I P-1 Hy~neBoe 3atieHfle. EcinH Q(x) 6yaeT 'IaCTHoe H I?(x) OCTaTOK OT aeqeH-iRn c(f((X)) Hia F(x), TO mbi 6yaem HmeTb: (9(fx)) = F(x). Q(x) + I?(x). 4 '1e6oTapCB.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 37-56 Image - Page 37 Plain Text - Page 37

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 37
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/53

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.