Osnovy teorii Galua.

.38 IL Fpynl1,imz___ _ Ado I<aaa T ei b CT B3O. 3llemeHT K = BCB1 C-1 (Na3blBaemutl K o mm yi, a TO0 ~OM 3J3emeH roB B ii C)MO)KHO rHPeaCTaBH'rb TaK: (BCB-1) c71. B CH4JIl HOPIMah~bHOCTH noILIpynnfbi N memmH BCB-1 a I1OTOMY 11 K BXOaHT itC pyrofl CTOP0uHbI K =- B (CB C) 14 TO'IHo roi'oTMV )Ke BX0JLHT Y. 9B31151RCb o6nutm 3J1emelHTom rpy[In ~) ii OH B Clilly 7C1loBtl% aO1II1 -1 mKeH 6b1'rb pa~eli UiJLfllH~e: BC137 C I. OTKy~ia BC G B, 'LI. 14 T.;i. 3. Hlpgmbie fllpH3Be.IeIHHll. E-c-n 14 ) - AL~a JUCJ,1Te11T1 F-pymlrbl(, B3aHMHO-[IpOCTble HI aepc.C~fHOBOtlHblC, TO COBOK~tHHOCTh ~IMCWHTOP B C rue B ripo6eraCT 3flemellTbl rpyrinmi ~ 1 C - 1rPyUI~bI ~1, COCTaBJ1HeT rpynay..Tje~ci-BHref~bf1iO, (B1CI) (BC) = BB2 CCm.I op x 3ic~of rpyr!Iml (0603tia'imm ee qepei. S) pabeii flP0143BnaeHno Hop UWB rpynn1 ~2 14 5i i~e1CrnreuuO qHCjIO jIaemel-TOB B.C paBHO 3TOMV H1pol31Be~eHHmo. Bce OHill pa3JjHtlill, ia1K KcaK 113 B1C, B2C2 BblTecanJo 6tiii BjB 3TO AKe 3JnemeHT, nHP&HaXU1ewa K ~5 1 K x5 J1oh1>eH (mlTb pa~eti eannHHHe, OTKyJa B1 B2, C1: C2. rpynna q Han3biB-~csi lip R m bi Mn 0M HO3 B e AH tiC iie pyiin ~5 IL t o)603Haqae~rCH TaK ~5> x. 3T0 imB3BfHC HPOI4CXORIIT OT Toro, WIO I~COuiep}a rpyHubt k~) Hi~ B Kat1eCTBe HiopmaJbliblX ThemlTeJneil, o6naxaaeT Tem CBOA~CTBOM, 'ITO B pa3Jo}KeHHH1 Hie TOu1bKO iGCi - ~C S ~C, HO Ta1 K~e CC. = C,. IOcUieaHee BbITeKaeT 143 Toro, 'ITO 143 paBeHCTHa GCG. = BC, (rmie B - 3JIeMeHT 1'pyflrlb ~)mb Hmeem B =C(CCC T. e. BXJqtTH B Hl1 B -1,Oya =J.TaKHM o6pa3om KOMHO3I4IUHf coHnp1}1eHHb1X CHCTem.S) C, xapaKl'epHi3yeTcsi K(OM 0311 - Liaeft,JneMeHTOB C, rprru~ B C14Jy tiero AnORHOJH1TeJbHaH rpynna S/ u43OM0p4wHa c 4~ ~/,~Si AHanor'iqHO H me e M: $/, 4. Teopemza 25. Ecan~ H~2-JBa maKCHmaJIbHbIX HOpmajibHb[X JaeJ1Teag1 rpytib~i (1, a T- Hx nepeceqeuHie, TO TeCTb maKcIMaJ~hHbIfl HopmanlbHbfli lieJiHiejib rpynrin S\ H ~52 Hf HPHTOM4 2Jl0K a 3a Te Jib CTRB. B CHJ1i ieopemwi 20 eCTb HopmaJ~bHblft JaeJIHTeJmb rpynnu o$. Fpynria C Oaep~HT rpynnbw b I bs P y" ~ H ~- B KaqeCTBe HopmaalbHbIX lteAHreiiett, KOTOpbie BMaMHO-npoCTi, Taic KaK HilaqeT He 6waa 6iw~ nepeceqeHkem rpynri ~ H ~2 co~~ep)KH npgwoe npHBe~ -x Ouio smBsieTCB HOpM aJqHbIM ixenH~AMeu rpyrnni H~ 11.1011)l(H COBna3Cb C TaIK KaK ituaqe H1 H,,J HI., Hie morJH 6bi 6bITb flP0CTb1MH rpynnanti,

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 37-56 Image - Page 37 Plain Text - Page 37

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 37
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/42

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.