Osnovy teorii Galua.

I. rpynnu~ BpeMeHHlOe npe11o6pa3o~aHrne Bce~x 9JemeHTOB COBOE~ynHOCTF4 [[p11 HomoWui oZWoro, H Toro We 9JeMeHTa. Ecmw T)Z 3aiauaHsi co8oKy[IHOCTb, TO rpeo~pa3oaaHHyf0 llpH niomomHU aneeMHT B COBOKMflHOCTb i 6yviem 06031HaaTb TaiK: B` T9ZB. TZ A +Ao + + Ali; TorAa = 1I B 'A1B + B 1'A2B +~ + B-'AmB) H44H 8 HoBeiIIIHX O6omfat-ieHm: Te op e ma 16. EcIH COBOKY~HHOCTb o6pa3y eT rpyrirY (flOA rpyriny F1X)H~ pyHBiim), TO 1! rlpeo6pamBavrnaf COBOK~[1HOCTh, B-' 92R B o6pa3yeT rpyriny.,L 0oKa3aTenb C T BO. HyCTFJ_ A,, Ai, AI 6yAYT mJemeHTbi [pyI711b1 TZ CBH3ntibie COOTHoweH4mm A. A. A. Torxaa (LF1 Ai B) (B1' A B) B-1BAB. T.mim o6pa3OM HO113BM~eACH14 3JIe~leTOB, BXOJIIJLUIIX B B-?NY BP TOWC BXOal4T B B'"-)1B. 311anee, eamuinua Ilpeo6pa3yelCA B aH~y B IJ B ==J. HaKOHell, o6paTlibig m~emeH r npeo6pa3yeTCS1 B o6pam H l r: (B'A)- = B*A —B. J!LeA~CT8HTeJ~bHo, W AB.B-1A-1B=B'1AA-1B=B_'B=J. (Cp. ynpawHeHUW 7 1H 14). TaKHM o6pa3oM COBO1(~HHOCTb B- TZB o6pa3yeT rpynnhy, q. 11 T. A,. FpynrlbI TZ 14 B_'?Q1B i4me1OT 0JLHHaKOBb1e nop14Lmi, Tal( Ka{ j~Ba pa3FHb1X 9JnemeHlTa rpyrnnsi M2~ npeo6pa3yboTC5J HenpemeH-HO B pa3Hbie 3lemewtbl: ecami 6iT HaUnpBmep H4me1o meCTo B-'AB B-'CB, TO, YMHOW,11 cnTeBa Hsa B, a cnpa~a Ha B-', )mIb rlonyqww 6bi A =C. Fpynnbx, rionyqaembie OJLHa 13 Jtpyrog~ InocpeICTBOm npeo6pamBafflrn, HOCIST Hm3BflHe cornpsi)eH H blX. 5. ECAu H rp iia $5 eCTb XaeJ1HTeJb rpyflnb1 (0, 14eu nCJ H 11TOM Bce corsp~s)KeHHbie c $5 Hoarpjylllbl, HOJjyqaembie 143 $5) npeo6pa3o a~aHIUM[- nocpe)LCTBOM BceB03M0>KHbIX mJemeHTOB Fpynhib 5 coBri7aJ1aaOT, TO $5 Ha3bIBaeTCq H o pmaA b H blM.LeCJHTeJIem (wrrn ti Hs iuap HaH T HOR noitrpynrlon) i p iim e p. PacCMOTPHM cHmmeTpuiucCKpo rpynnry.4 4141 cUeflelH. Le nou'pynna 1, (1 2) (3 4), (1 3) (2 4), (1 4) (2 3'), Hucsui~asi Ha3BHl14 *Vierergruppe", eCTb Hopma.THbJHl 31hIH4TeJlb [rpynnfbi e(,. E)TO cpa~y BIATeKaeT 543 Toro, 'ITO rpynria G4 CO~Ce)HT TOJ~bmo 3 JaBOAHWbX TpaBHCI1O3tiLHI141 (cm. ynpaWiseHsle 9), 1(OTOpbJe Bce BXOJIIT B Vierergruppe. flO-,TO~y Bcflxoe npeo6pa303awi1e, coxpaHs1iq [UrIeHHb1A TIMU I1OLCTaHOBKCH, Henrieme~uo [1epeOJaHT COBO~yfluocTm 9TIIX n'OIICTaHOBOK( B ce6.q. To'rno TaK we Vierergruppe IIBA51eT~ Hopma31bHb1M AeAHTei1em ApyrHX no~1rpyrnn rpynsma (2 a i4meHHO 3HaKOflepemeHHoAh rpyfnnbl Q14j H ciie~ymoueft rio~rpynnua 8-ro nOPR1AK~ [CM. (2 7)}: (3.1) 1, (I 2) (3 4), (1 3) (2 4), (1 4) (2 3), (1 2), (3 4), (I 3 2 4), (1 4 2 3).

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 17-36 Image - Page 17 Plain Text - Page 17

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 17
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/34

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.