Osnovy teorii Galua.

~ 3. Hopmeatibnbie JeximeAa 2 29 pa3OBaHHbIM 14,3 A HpiH nomomji B. Ecmi sJIemeHT B He.elie)(T B iueHTpe Bffl4maH14, TO maCTO HaublBaIOT Ta1~we 31IemeHT B- AB Co 1]p sIKCeRH bl M C 3JlemeHTOm A. B HOBeit~ellenH.lTepaType- cof7p1mKeHHble 3JaemeHTbl qaCTO o6o3Ha,-aloT Tai{: 1 13 W-AB -A H~peo6pa3OBarnie He meH~IeT auiemeH~a TOrJLa 1 TOJlbKO Toraa, ecaii ripeo6pa3oBbI~aoLou4Hl i~ npeo6pa3yembirh!I1memeTbi nlepeCTaHOBO'-Hbl. LteACTBliTeJ~bHO, 143 paoeHC'foa B 'AB =A cJaea~yeT BA =- AB ti o6paTHO. 2. Te op ema 15. HOpRIj~Kl CO11pfDReH~bIX aae1vieHTOB paBibl. o~K a 3 a TeA b CTB O. EcAiii A B-'AB, TOA~2 B-'ABB-'AB~ Bl'A2B;.tamee, /1 -A$2. A ==B-A2B.B1lAB -= B- A3B,_H T. A. Eclm A M j, To Am' BWAmB = B1JB — J. H03TOMy 11opaJoK A He mome{T 6bn'b BbIwe1 nop~uita A. O6paTHo. ecalH A -tB_'AB, TrO OTCioaia A = B4B1, 'H TaKHim o6pa3oM ecJiH A" = J, TO H A' B 'B-'==B]B-'=J. C~eiaOBaTe~nbHO IIOPfI.KH 06014x 3JemeHTOB paB~bl. 3. Hpeo6paaoBaHHe UOJWCTaHoBoK. Ectiw meIMeHTbI rpynriu 5IBJARIOTC5I nOJLCTaHOBKamH, H npHiTOM nO~jCTaH1OBKa A 3aflHCaHa1 B tU4KJax, TO He TpyIAHO, He HlPOH3BOJLH )jegCTBkif1, HanHICdTb nlpeo6pa3OBaHHylo IOJaCTaHOBKY. a1IJIS 9Toro TOJIbKO HY)KHO HpOH3BeCT14 I1OXCTafHOBKy B Haxa Lumcpamii iBbipa)1aoIui~Hm1 A B wimHJax. B camom LaeJe, HYCTb Torjia B- IAB= A nepeBoiuuuT B k, B FIepeBOAUIT k B a., TaK14M Otpa3OM B_'AB tiepeBOJW1T Mi B 0C, k14 mbi timeem: B-'AB - ~ x~,... t)..(awl.. cj 39To emie pa3 11OJ1TBepx4(ae~F TOT Op aKT, 'ITO nOP5A1O1( H'3,1CTaHOBK1H He meH~1eTC51 OT npeo6pa3oBaiiuH: JaeflCTBRTeJ~bHO, cor~iaCHiO ~ 1.11 IIOP5IJILOK noxarTaHOBK14 eCTb HaMMe~buIlee KpaTHoe OT HO~pSIIIKOB ee tUIKJOB, B TO BWMfI im~ OT Hpeo6pJ,300aHHH 1L1~KJlbI OCTalOTC14 Heli3membiHbIM1 Y ii p a ~K B et H iie 13. fHyCTb. A (I 2 3), B = (I 2). H1poBepluTb iieHocpe~tCTBeHiblbM BbI4HcaeH~em, tITO B-'AB =(2 1 3) =(1 3 2). YB pa)*cH e iiqe 14.,l~)%a3aTb, 'ITO 3JnemeHT, o6paTHbri1 K HpOH43BejHlenIO, pa~eHi fplPO3Be~LeHu4o a~ieCeHTOB, o6paTmblx K 9jieMeHTaM-MHOWHTeqWm H B3RThJX B o6paTKIOM rOPIAp~Ke: (AB)-' — B-'A-, (ABCf"i = C1B1'A-1, 14 T. 4.l 4. Hlpeo6panoBaHHe coBoiKynHoc'rei H rpynrt. noJL n p e 0 6 p a 3 0 B aH e m CO0Bo0K Y n 0C T It 3JiimeHTOB rpynn~bi MN 6yaem HOB14MmT OJHO

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 17-36 Image - Page 17 Plain Text - Page 17

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 17
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/33

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.