Osnovy teorii Galua.

22 22 ~~~~~~~1. rpynrnb B CHJAY TeopemhI 6 Bace weImeHTbl rlpaBofl tiaCTH pa3JIH4HbI mewKay co6oM. TIOBTOMy B rnpaBOh qaCTH pa~eeHCTa (2.1) coaepicKHTCl mnk pa3JIH'HbiX RemeHTOB, a B neBOfl Hx ~cerO fl. HODTOMY (2.2) n= inmk. 3TO paBeHCTBO JtoKa3blisaeT Teopemy. Pa3.ToweHme (2.1) HOCHT Ha3aHane p a A ow eHHR rpynnbi M5 no ri o.L r p y n ii e ~). '-hrcno k, T. e. qHCJIO coapq5DieHHbIX CH4CTeM B paAo)Kc11111 (2. 1), Ha111 I1pOCTO tiaCT~oe nfplOaJKOB rpynri 15H? HOCHIT Ha3BaHHe HH ii e K C a noawpynrui i~ OTHOCHTeJ~bHo rpyrnnbi H '4aCTO o6oBHaqaeTCs~ MO>KHO C Tem Nce ycnexom YMHoxm3b ~) ia 3J1emeHTbl rpyH~bi ~25He cripaBa, a cnleBa, TaK ~4TO HOA~4HTC51 pa3JIo>KeHHe C ii eA2 C T B H C. HIOPSIAOK I'pyflnbi aeaJHTC51 Ha nop5IAoR.n6oro cBoero aiiemeHTa. 3TO cneayeT 113 Toro, 'ITO, ecaH~ HOPHJLOK 3nemeHTa A rpyrnnm (0 eCTb Mn TO aJ,2meHTbI I, A, A2, I. A "'' Bce pa3JIH'HbI mewKJy co6ofl (ynpax<HeHHe 1 H COCTaBARHOT rpyniiy nop111Ka in, KOTOpa14 1BJIBeTC5B aenJHTeJIeM rpyrrnbr, 06pa',3oBaHHue CTene~H$1MH KaKoro-HH6yJ~b BnemeHTa, Ha3bIBa1OTCff LLHKiJIHH T4eC KH MH r p y ni a mH. HeTpyiuHO y6eJli~rbCg, qTo Bce I4HKff wieCKHe rt~v1i~bi a 6 e.T e B hb, T. e. rIO21'IHfIIOTCfl KOMMYTaTHBHOMY 3aKOHy. 6. Pa3.iIohfeH~e IIOJCTaHOBO1( Ha TpaHCII03HIXHH. HlonaeM, lITO BC5IKYIO [IOJ1CTaHOBKY MO)KHo nlpe2CTaB1Tb B BH21e J1poHBe21HHH9 HecKOJIbKfi-X T pa HC H03 H LPI Hr5. e. FTOJJ2CTaHOBOK, ne pem~enaionwx 21Be IXHqpbJ H OCTaBAMIO101UHX OCT3albHbie umH4pMW HeHl3meHlbIMI. Bbune (~ 1, ni. 1 1) Mbl BHAeJIH, '4T0 BC5IKY10 nOJ4CTaHOBKY MOKHo nIpeACTaBUTb B BHJ~e I1pOH3BeAeHHSI UAHFCJOB. HOBTOMy LOCT0TO4HO 11POBepI4Th Hiaue YTBep>K2eHHe 21.15 LfIKAa. HocJaeRHee InpOBepH4Tb HeTpyJIHo. B camom aeJne, (1 2 3)==(I 2) (1 3), (1 2 3 4)=(1 2) (1 3) (1 4), (1 2 3... n) = (1 2) (1 3)... (1 i) O6paTHM 3AeCb BHHmaHHe Ha TO, 'ITO II~HKAUb c 'IeTHbIM 'IHCJIOM IWO4) pa~iiaraioTCsi Ha He4eTHoe 411CJIO TpaHcrnO3HU1iI1, C HC4CTHbJM 'IH4CJIOM 1LHqlpHa neTHoe 4HCJO Tpa-Cn1O3HLJ.HFl. HO0BTOMy AA (3KmtOft Aa1Htiofl HaCTaHOBKH mbi mo)KeM BblC4IHTa~b, Pa3JIO)KHTC51 Ali1 O~a Ha '-ieTHoe H.IH Ha HetieTHoe 41HC11 TpaHCflO3HILHA.,IeflCTBH4TeJbHO, eCJ1 nIOACTaHOBKa COCTOHT 143 IHKAOH HOpulAIOB n%. n...,nk (n, + n2 +...+nl/in), TO '-IeTHOCTb nOAyqaemoI'o 4Hcala TpaHmnI3H[LHA saBHCHT OT Toro, 6yAeT.In 'IHC.1O qeTHMM H1.1H HeqeTHbUM. HpH 3TOMI MIA A1O.)KHbl TameK npHH51Tb B pac'IeT H4 OIlHo4JIeHHUC IKHKAUl.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 17-36 Image - Page 17 Plain Text - Page 17

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 17
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/26

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.