Osnovy teorii Galua.

~2. Ho~epynnbi 2 21 FOR CTOpOHbl, OHO HeripemeHHO co~jepwKHT Bce 3JnemeHTUb 13 Wt, TaK MKK rpyrrna %f co1~aeCI4T exuiHUY I, a nlOTOMY W?{*2 coaepmi T W f.J, T. e.. O6paTHo, ecAiH 2TA = Wt, TO B cWny pe3yJlbTaTa ynpa)K(HeHH% 7 ~ T4BJI~eTC.51 rpyanotL. BBeJLem eme c.aeapyouiee 0603alaqeI-le: ecmir coBoKyrIH4OCTI, Q3 co0aLepwl)K14T C1H 13 (T e. COCTOHT 143 9JeMeHTOB, jKaK(RJf1 143 fCOTO~blX RBlJIS1TCff 3JIemeITOM 'il!), To 6yIaem iicamh ~)t >- Q13; ecaii we nHpf~romi PaBeHCT1BO o6eux COBoKyn~locTehl HCKJlI{HeHO, TO 6yIaem Htica: %t > ~3. 4. HlyCm (B2=5 Al. + A2 +... 4- A, CTb rpyrrna, ~) - ee noIarpynna. CoBoXVnH~OCTm Tmna ~)A, HanbiIlaioTCH c 0 H p fi >{ e H H IAM CH1 C Te ma M 1 I'ImeeT MegTO T e op ema 6. CRCTembi S,,A, coJL-pima rnp 1 BC51KOM A, oILHo 1 TO )Ie 'IIcJIo 3.TemeHTOB (paBrnoe niop~auy rpynribi c)).,T1Be CKCTembi )A 11 k) 1411 HntcoHIa3JaOT, 11111 fie couiepma o6wjix JiiemeHTOB. Xt 0K a 3a Te ji b CTBHO. 10. qTo6bi JlOKa3aTb, 'ITO -iHcjla 3.11emeHTOB COBOI~YnROCTefl S i) 14MA oaiHmaKOBhI, 11OCTaTO4Ho notca3aTb, 410 cpeJLH 911e$z-)A1== Ai +B2Aj 4-+ + BmAj, C.ae J + B2 +.. -1 Bm,, lie BCTpe4aeTC5] 011JI~aKoBIAx. JI1OnyCKaff Ha aptimep, WiO H4MeeT meCTo BrA BsAi pH~1 r -I- s, ii ymiiHO)Ka 310 paBeH6180 cHipaBa Ha Al', MNb! 1-1OJlyqlM B, Bs 'ITO HeBo3mO)KHO, TaK 1(aK BCe AJI Oe eH TbWI 1, 82, *.., B., pa1wimrifbl. 20. H~pearonioormm, quo 14 ii S~lAk 1MIi~eOT o6u1141i 1emef1T BrAi= B8Ak~ TorIa, ymHowa(3S pa3ei3CTBO c11ena ina B,,-, rnoay'iktm: (2.1) A =B -1 B7A. Boabmem npO143BO11b1Iblt 91CmeHT BAk cHicTem w Ak. B cH11y (2.1) OH Pa~ei BB1 BAt. HO TKaiBB -I B CCTb 311emeHT FpyHnbl ~)) TO BIA eCTb 3JemMCHT C4CTembi ~)Aj. rloao6HblM-, we o6pa3oM mu! nOKa)Iem, 1110 BC5IKHfl 3emefHT C14CTembi ~A1coJaepwKHTC~l B,,) TaK14M o6pa3OMI 5. T e op emia 7 (,I a r pa HzAa). flopnim ioK 10f'yHHu eCTb. ae1HT-egb nopRAI~a Hepnoiia'Ia11bHof rpylnbl. LloKa3aTe11bCTBO. HYC~b 11onpem)ielmy ~W JA24-+. +-A, )=J +Bz+. + Bm 3,aecb IIOP51JLOK 0) eC~b Ii 11 nopmi~oKit )-~ n.BC1 TO TO,1 311emefimu 8, coJIep~iaTC5a cpeiui A, a TaKwKe Toro, 1410 k) coael-,kHIT eaitHi l Ity, 6yiieM HmeTb: B 11eBon~ qac[1 3TOrO pauieHiCTra 6yiaem OCTB.M~ TO11bKO HO, OAtr-Of 143 o~tHHaKOBbIX coJ7IweH>KHb1X CMCTeMT, a OCTa11lbfwbe BhivepKHem. HIYCTb B pe3YIb1~a'e HO11yqHTCfl pa311Oe(H1e (2.1) Q - =)+ SA2 +. +Sk)Ak. *) Mm11, cor.'iaCH( TePM11HO.3O[r4i1 MaTCmaTkIqecKofl 3HLWKjIonHeAIH, CMCI(IIMML anaccam14.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 17-36 Image - Page 21 Plain Text - Page 21

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 21
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/25

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed June 17, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.