Osnovy teorii Galua.

~ 1. Ocuiowbie nouamuq 1 1 7 HHTepeCHO, WIo ecnii~ 3jie~meHTbl KaKofl-HH6y~tb a6CTpaK(THOR1 rpyruIrb noA~tlHH5UoTcsi acCOLLHaTHBHOMY 3aKOHy, TO iMX mo)Ho paccmaTpHBaTb, KaK HeKoTOpbie upeo6pa3OBaHlig. 3iaeCb MbI He 6yatem AIOKa3UBaTb BTOFO npeianoweHHH1 B o6uweM BHJae. 5. B Ka'ieCTBe eJLmtHHibl (KaK nlpaBOf4, Talc H JneBOA1) B rpyrine npeo6pa3OBaHHf! CIIYNKHT Talc Ha3bIBaeMOe T o e C T Be H H O e n pe O6 p aaO0BaH H e, OCUaBJIII)tomee lKa)KJablif aneImeHT NiHo>KeCTBa T Ha meCTe. Hpeo6pa3O~aHHe, O6paTl-ioe JaaHHOMY, flojly'aeTCH Taxc: ecJIH XaHHoe ripe-. o6pa3OBatiHe HepeBOJLtHT AM H M', TO ot~paTHblM nipeO6pa3oBaHl~eM Ha3bIBaeTCR npeo6pa3OBaiHne, nepeBoa~iuiee M' B M. Harp., eciiii A (-=XI X2 X To rnpeo6pa3OBaHI-e, o6paTHoe A, nepeBoaHTu X2 B X1, X B X2, XI BXS. TaKHm O6pa3oM OHio eCTb X 3X ilIX 3 I X1 X3/ X3X X2! 3ameTliM, 'ITO B 3ari7HcH nloauaTHOBKH MOKHO pacCTa~i3Tb BePXHHte 3Haq4KH B nto6o~i nOpgIJKe, HO TOJlbKO npH TaKHX nepeCTaHOBKaX HH)KHIP 313'IOl( Jaojiwe-H cJiieaoBaTb 3a CBOHM BepXHHAI. Hanipi-mep, (3X iX) (ix 3x) XI 2 x4 X3 x4 x3x XI 6. Teopema 1. r~pynria coJiep>KHT He 6ojiiee QLIHOfl npaBoiA ejiuiH HUbl. J.K a 3a TeJA b CT BO. HYCTb J H J, 6yAlyT JBe nipaBble eal1HHH1Lbl rpylnifb, npH'lem nyCTb J 6yiaeT Ta eJaHHHI~a, KOTOpaff Tpe6yeTcH aKcHomoft IV. I4meem: YMHOKHM o6e 'iaCTH cripa~a Ha J.4: J1JJ1.41 J.J4==. YMHO,-cIHM o6e 'IaCTH cnpaaa Ha 9J1emeHT X, npaBbliA o6paTHblAIC ic., T. e. TaKcoft, 'ITO J1X =J: J11J1JX =J1X, T. e. (1.2).41=1-. CpaBHHBaHi (1.1) c (1.2), rlonytiaem: J, =-J, oTxyita BbITeKaeT, 'ITO o6e eJ~kHHHUbl He MOr-yT 6blTb pa3nIH4'Hbl. 7. T e o p e M a 2. Ilpa~laii exJiHH14a oJUioBpemeHHO 5!BJIfleTCff H JleBofA eaLHHM~tefl 312 OK a 3 a T enJ b C T B 0. JUiOKa)Ke-m, 'ITO AJI% BCHI(oro 9.TemeH-Ta A rpynrbi HimeeT meCTO JA = A. BBeTi~em o6O3HaIeHn~e (1.3) JA=-B. YMHOIKHM 9TO paBeHCTBO cripalla Ha BJiimeHT X, nlpa~blfl o6paTHbItl IC A (AX = J): lAX= BX, T. e. J I- BX. TaKHm o6pa3om AX B. YMHOicaq cnpa~a Ha 3J1emeHT Y, npaBblfl c~6paTliblfl KC X (XY -J), IIOny'IHM: AXY ==BXY, OTlcyJaaA=r-B, T. e. JA =A. )LUoKa3aHHoe jtaeT Ham n~paBO Ha3b1BaTb 3JIemeHT I n~poCTo e A H H H1 i efl 8. Te op e Ma 3. Hlparndg o6paTlabIfl gJ1emeHT SIBJsieITC51 B To )Ke BpeM% H JleBbim o6paTHMlM 3JnemeHTOM, T. e. 113 AX = J cn'exayeT XA = J. lll2 a 3a T eA b CTB O. BBeJaem o6O3HaqeHHe (1.4) XA=-B. 2 'Ie6oTapeB.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 17-36 Image - Page 17 Plain Text - Page 17

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 17
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/21

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.