Osnovy teorii Galua.

2nd Teopun quceA 204 TeovuR ucevl 3. ByateM~ Ha3UBaTb coB~oKyUIIOCTb 4HceJI, cpaBHHmbix n HoaJyAIo, m,, K jia c c mc Cpa BH eHH1 HA O MOfIYJ1I m. RJUL5 KawaToro moJayJI5 m oqeBHA4HG CYa~eCTmyeT m pa3AilHblHX KJ<aCCOB. B K~aJLom Kiiacce MOWHO HaRtTH n&, QALHOMY H TOJlbKO OAHUOMY npealCTaBHTeJio, X, KOT0ObIA 6bin 6w noaquineH O <X <iM. TaKHe HnpJtCTaBHTeJIH KslaCCOB flOnJ14IiH Ha3BLIHHe B blqe T 0B HG Bce Kiiaccmi cpaBHe~ffifl rno mo~ayJio in o6pa3yWoT rpynny m-ro, nopsaLKa OTHOCHTeJ~bHo CJIO>IMH-5I. fHpu onepauwusix c qTIemeHTamtH kTOl rpynnw MoKHG HMeTb aeno, H-e c LLeJbAMH KJnaccaMH, a C Bbl14eTamiMK AMir KJaacca. Ho npti cJIoKeHHH AJBYX BMlqeToB mo)I(eT y)iKe He n1OJIyqHTbC5I BbliqeT, H TOr~a noCJIe cJIow*eHHLI Haio OT6pOCHTb (Himn pHlaa~b) OT cymmbi I{pTHOCTb MOAYM15 in TaK, '-ITo6bi oHnITb nwjlyqtlHJCR BbltqeT. ECAH IBblqeT B3aH4MHO-HPOCT C MOJL3Je~M M, TO H Bce BXOJL5ILLHe B TOT we~ Kicncc MI~cna B3aimHio-rnpoCTbl C M, ii o6paTHO. 1`OBTOMy Mbl mo)Kem rPOBOPHTb 0 KJiaccax, B3aHM H0-rpoCTbIX C moayJIem I. TaKHX KiiaCCOR o4eBHJLHO cp(i) (T. e. CTOJlbKO0 w*e, CKOJlbKO B3aH4MHO-rlpoCTbIX C M BwlqeToB). OHHl o~pa3yIOr rpynniy OTHOCHlTeJlbHO YMHo}KeHHSI. aLeflCTBHTeJlbHo, eArHHCTrneHaoe, B 'em HiyiKOo oco6o y6eauiTbCsI, 9TO cyiueCTBouaniie o6paTHwx 9JnemeHTOB. Ho oHiI nioqyqa'ioTC5 KaK( peawensil cpaBliieHHSI ax 1 (mod in), rae a - 3aaaHnbti~ BblqeT. H~pli 9TOM pew~eHH5I COcMBJUIOT eJLHHCTBeHHbIA KJia~cc TaK KaK 143 ax 1 (mod m) ii ay 1 (mod m) mu lo~nytiaem a (x -y) -O (mod m), OTKyJaa B CHAY VI HMeem x- y =O (modin). IlyCTb a HlpO143BoJfbHoe LIUCJO, B3aHMFIO-npOCToe c in. Ero, C~erneH o6pa3Y!0Tr UIHKJIHqecKyIo noiwpynriy (OTHOCHTe~bHO YMHoHweHHII) KjiaccOB. HJOPHIaOK 3TOIR HoJarpynb1 pai~eH HaimeI-bHmemy 1oKa333eJIio f, iawoaemy (3.2) a' 1- (mod tn). BCHOMHiHaff Teopemiy JlarpaH>Ka (y Hac - Teopema 7), Mwi y6eawmcg, 4T0 IIOPR1JOK n 3Tofl awHJIJHqeCKOfl rioarpynnu eCmb lejiHTe.Tb nopsu~ia (p (in) Bcef rpyrinwl B3aHMHO-npOCTbIX C Mn BblqeToB. HlyCTb cp (in) = n. q. BOMBARs ole tjaCTHi cparnienimi (3.2) B q-io C'reneub, Mbl B cwny XIX 6yaem HmeTb: Hs TaKIHM o6pJ3OM Mbl flHXHOIWM K cJaeapyoueL Teopeme: XXI. (TeopeMa 9flaeplI). Ecmis a B3aHMHo-npOCToe c mf LIM10I, TO H-meeT MeCTO ~ paBHeHHe Bepff B KaqeCTBe Min HOCTOC qH1C]IO p, TaK t1To 6y.zeT liMeTb MeCTO p (p)=p - 1, Mb! noJny4im: XXII. (Teopema 4epma). Ec~ni (a, p) =,TO imeeT meCTO: (3.4) p - I - a = 1 (mod p).

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 197-216 Image - Page 197 Plain Text - Page 197

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 197
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/208

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.