Osnovy teorii Galua.

~1.- 0 OeiruMocmu quceA 9 199!7pum~ep. PeiuHTb ypaP~eHue 34x + 28y = 2. HMmeem: 34 28*1 4-I6, 28c 6 -I+-4, 6= 441+2, 4 = 2.2. OTcMoaa 2-6-4.1 =6-(28 - 6.4).1 = 6*5-28*1 =(34 -28.1)5 -28.1= =34-5 - 28-6. TaKHM o6pa3oM 3Ha'IeHH5I x =5, y =-6', 5IBJISIOTC51 petueff~eM 3aw~HHoro ypaBHeHI~a. 5. EctiH o6nwfl HaH6onbmuiH aTeJHTenb aLBYX 'wceii a 14 b eCTb ea~nimnaa., TO a 14 b Ha3bBaB[OTC5H 63aUtMH-(-npoCMblMtt qUcula.4. ULIA5 B3aHMH0-rnp0CTblX qttceni a. b ypaBueH~e ax + by = I KmeeT pemieHmH B LueXbix hLmcnrax. HmeI0T meCTO caieapyione Teopembi: VI. EcnKI a - b JLeJIHTC14H WIC, a a B3aHMHo-rnpOCTO C C, To b JaeqfHTC5I Ha c. l 0K a3 are JI b C T B 0. H~yCTb X, y 6yprerpeuieiWie ypBe~ ax + cy = 1 YmHoHmm 310 paBeHCTBO Ha b: b ab -x +b -cy. 06a 'tineHa npaBoM qaCTH JIaen1STCff Ha c, a 11OTOMY H CHJy ii H HXcymma, T. e. b, aeaiHTCHI Ha c, 'i. H T.. VII. EcJIH a H b B3aHMHO-rlpOCTbl C C, TO H HX npHBae ~- b B3aHMHO-rIpoCTO C C. tOK a 3a T e bC T BO. Y"aBHeHHli ax + cy H bU +CV ~r-Aq Hme1OT peineuwi B iuenbIX q-HcJax. IHepeMHOIKHM 3TH ypaBn-eHHnI: 1=(ax +cy) (bu + cv) =qab -xauJ c, (axv + bya+ cyv). 3TO paBeHCTBo n01a3bfflaeT, qT0 ypaBeH~HH aZbx + Cy ) 1 umeeT peUIeHH9 H iaenjmX qHcJIax, Tr. e. qTo ab H C B3aHMHo-rnpOCTbl, 4i. H- T. it. VIII. EcJiH a teiiTCRc Ha a~ B3aHMHO-rnpOCTbie wHcnTa b H C, TO OHO JeiT~JWCR H Ha HX HP014I3BeaeH~e bc..jOKa3aTeJnb CT B. IlyCTb. a = bq, rite q HeKOTopoe iueuioe 4Hicjio. HO YCJ1OBHiio bq aJIlJITC$1 Ha c, [1pHLem b B3aHMHo-npOCTO C c. Torita 143 reopembi VI cJneayeT, qITo q aeahHTC51 Ha C, T. e. 'iTO a = bq JteJIHTCH Ha bc C. H4T. it. 6. r3yitem pacaP1B~ Taioe o6uue HaHi6ojibHIe iteJHTeJIH HecKOJHjMIX qi4ce)1. Hycmb a, b, c Hime1OT 06M1UM HaHi6oJnbHHm teniHrenrem d, H HyCTb (a, b) =- 4,. Torita. IX. d eCTb TaK>Ke o6UAHH~ HaH6O~bWHR4 itejiHrejb qHceui di H C. o K a3 a TeJ b C T Bo. YpaBHeHHe ax + by = di~ B cHJIy V iimeeT peweH~e B iJnbix qHcJI3x. H3 ae1lJ1MOCTH a H b Ha d cneityeT aetJIHMOCM Ha d f4HcJ1 4i = ax + by, OT~yita BHitHO, TITO d eCTb tejiH4Te~ib d1 H c.,Tt~rYCTHM, 'ITO (d1, c) d2 > d. Torita BblflieT., WIo a, b, c xtejiTCH Ha d., 'ITO HeHO3MO)KHO

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 197-216 Image - Page 197 Plain Text - Page 197

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 197
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/203

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.