Osnovy teorii Galua.

_______ ~ ~ ~ S 6. Keae~pupye-mbie AYI-1OqIU __195 -HaHmeHbLUH41 HoKa33TeJlb f TaKoro poiaa, 'To6bI HmeJIo meCTo 2f~nE 1 (mfod 23). Hafla~eM BbI4eTh CTenenefl qHcJIa 2 no mQoaJHO 23: 2, 4, 8, 16,_9, 18, 13, 3, 6, 12., 1. HwonyqaeTCHl f =1 1. TaKHMrv o6pa3oMf LLHKJnbI pa3JlOmKeHllfl ypaBHeH141 (6.5) no CTefleH.M qHcjia 2 HmeIOT B 9TOM Cuiyqae HOP51AJKH 1 1, 1 1, 1, 1, 1, 1, 1. M143 1mmeioHuHxc 3JLecb 6Jqaronpii~TflbIX LLHKJIOB HeJnb35 COCTaBHTb ypaBHeHHe 841t CTeIneHH. B C~nyqae m = 27, fl = 1 1 KOPHHI ypaBHeHHHl (6.5) pacna~iaaiTCn no MO-.iRyJIuO 3 Ha LimKJbi nlOPHJKOB 9, 9, 8, 1, a no moayat1o 11I-Ha LLHKJIbi noPRAIKOB 8, 10, 8, 1. B.TiaronpH51THb1fl CfIyqail MOP 6Mi HmeTb meCTO TOJnbKO TorRa, ecim 6bM ypaBF~eHiie (6.2 1) HmeJ1o CTeHeHb ut = 8. Tor~aa ero KOPHH no moJLyino 11 6yxiyT COOTBeTCTBOBaTb OJLHOMY 143 kllHKJOB nopuix~a 8; W111 3TorO 1LHKJna WHl Bce 3Ha4eHH51 p nlOJlo}KI4Te.TlbHbl, HJIH4 Bce OTpHl~aTeJlbHbi. Ho ypaBnieiwe (6.5) B03IBpaTHO, H ecalm Hanp~mep pa3Jo)KeHH51 Kopuell ero MHO)K14TeJiH f (x) no C~enei-iqM 1 1 HMeIOT fl0J10?K~lTeJibHoe 3H-aqeHile p, To no-.THHOM XSJfy) Hme%.TUI5 pa33Jo)KeHH1 CBOHX KOpHefl no CTenHSHHM 11OTpHltaTeJbHbie 3HateHH5I p, 6yaeT' B3aHMHo-rnpoCT C f (X), OTmyaa 6yJ~eT ciiejioBaTb, 'ITO ypBe~i (6.5) HimeeT BAM MHO)KHTej1iq ceneffli 8 C K09j)4)HU[HeHTamH 113 nojii K (j~.OJHaKo pn3JoxceHHe KopneA1 nO CTeneHRnM 3noi~a3bIBael, 'ITO 9TO HeBo3MO)I{Ho. TaKHm o6pa3oM cjnyqatt m ==27, ni = 1 1 TO.)Ke He6Jaaro[IpHTeH. B) B 9TOM cnvy'ae paccMOTPHIM ciieapyowiie nOJLCJ~y'aH: 1) m=p, n -q. Tom ~p-~22 + 1, q ==22 +1, a nTOTOmy 22'= 2P+2 OTKyJaa cJneJyeT: s ==2p, 22 = 2.22P., 2 1 + 20, f 0, ~=1, p 5, q =3. 3TOT cjnyqatt 6biji H3BeCTeH RJnay3eHy. 2) tn=9, n q, m n-n 2'. Toraa q =5, T. e. m =9, n =5. Ho moJ1aJIIo 2 Mbi noJnytHM (x7-1) (X2 -1)I'm- (mod 2). '4To6bI HaR~TH HeHpHBOJLHMbIe no moJLxy1o 2 MHOMKHT6JH flOJHHoma X7-1 Hafl~eM BblqeTbI cUenei:ef4 2 no moJ1ynJio 7:2, 4, 1. HO3TOMy KOPHI4 ypaBHeHHAg (6.5) pacnaiaaioTCH no moJ1Jio 2 Ha LLHKJII flOP5IJKOB 3, '3 1, 1, 1. 9To flpOTHBope'IHT TOMY,, WIO u = 9 - 1 = 8. 3)n p, n = 9. 2 2 +1I=23 +1I+2', s=-3, cx 2, p= 17. OTCIoAa m=17, n=-9. Hlo moJ4ynio 2 mbi noJny'iHm: (x3 - 1) (X4 -1) - 0 (mod 2). BbxiqeTbl CTenenefl 2 no mo11yJIo 13: 2, 4, 8, 3, 6, 12, 11, 9, 5, 10,0 7, 1. KOpHH ypaBHeHHS1 (6.5) pacnaaaaioTCH 11o mOJy2nio 2 Ha UJ4KJbi nopgaxK(OB 12, 1, 1, 1, 1, 1. 3)TO[Ip9TI4BO~peqT TOMY, 'ITO u =17 - 1 16. 4) m ==273, n -q. Torjaa 27 =2 + 2:`1+ 1, 28 +22P =26. Oicio~a H4111 20 == 1, 1411 S= 1. B o6oHx cjiyIaflx 9TO HeBo3MO)H{H, TaIK 1(K pa3 -IIOCTb 27 - 1 - 2 =24 He pa~ CTen~eHi4 aIBOR1KH. 1 3*

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 177-196 Image - Page 177 Plain Text - Page 177

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 177
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/199

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.