Osnovy teorii Galua.

192 192 ~~~V. Ypa-szenum C 3adannbimu opynnamu TaK 'ITO Mbl Hmeem a. ~ 1, X~<2. HO TaK KBK k < 2X~, TO k<3. TaKHM -o6pa3oM BO3MO)KHbI TOnlbKO ~CayiamH p1.- 9 ii p = 27. B cyiiyae p) k = 9 6hlarorlp1llTHoe 3Ha'ieHHe p paBHO -- B ciiyxiae -~e p = 27,P= III) X 1, k=~ 1. Torma p= MO)KeT 6bITb 6jiaFor~pH51THbIM 3H3aeHHeMI TOJnbKO TOFLa, ecJ1H p HMmeT dppm 2' + 1, T. e. gmiBefITCfI ray~ccOBbIM I1pOCTbIM 4IHCJIOM. 10. Oripeazern~m CTeHeHb it H~e1pHBOAHMOFO ypaBHeHHI45 (6.21). B BHJ1Y TOFO, tITO 6JnarofpHINTHbie uH4KJIbi timeOT HOP51J1OLC p - I npii k 1, 8 npjH k 2 iH 8 npH k =3(Mb! HpHHHmaem BO BH~M aHlHe, 'ITo nIH k 1 ~Ik =3 'nc~no _ o6JlaCTH paIIHOHaJnbHOCTHIK (jfi) Hm~eeT nopRui1(OBoe 4HcJIo - a npu k = 2 - 'wcjia o6.nacTH pau1LHOHbJIOCTH He MOrYT 4MmeTb lltpo6Hbix FO510UKOBbIX tuiceni), Mb! BHIIHM, 'ITO Ut RLOJI)(HO, IIeJHTCfI Ha p1' -1 UpH k z1 Hi rpH k =2 14 va 8 npii k =3. C iipyrofl CTOPOHbI, 6narornpn51Tbime LHKn1bi COOTBeTCTBY1OT 3HB'fi~HLO a 1 Hqa'I~JbHOFO qIneHa k pa3J1o)KeHHH KOpHefl, a TaK- KaK 3T0 3Ha1TeHi4e HimeeT KpaTHOCTb p H3 KOTOpb1X OA!HO 3Ha'IeHl~e COOTBeTCTBy eT TplHBHliJMHOMY KOPHIO X =1 TO B C~nyqae k=- 1 H k = 2 HmeeT m eCTO (6.22) a -! — 1.c B cniyae wie k- 3, T. e. Pk 27, cyILueCTByeT eaLiiHCTBeHHb~iR 6.naronpH45ITHbIfl LLHKJ! rop~uua 8, a!1OTOMY (6.23) ui = 8. 11. )IIOnyCTHM, 1ITO mf coae~p)HT HeCIKOJbKO pa3J!WH-mb!x HpoCTb]X MHO~4(Te1eft: mn = p Pi'.. TorLa B Cl-lny COOTHo[Htuefim (6.22) Mb! 6yaem H4meTb: OTKyaLq pkp - q.,'TO HeBiO3Mo0vHO. To'IHO Tal( we ecjrn p'A=- 27, TO let ' 9, T. e. p,:: pl. TaKHM Ot~pa3OM MIA BHJLHM, tITO ni J0iTDKilHo 6blmE CTeneHb1O flpOCTOrO 'IHcjia. 12. PacCMOTpHM pa3JIo)eHW1R KOf)Hef HO CTertieHMm q, ume q -Hl1OCTOPI MHOKH~I~ tHCJ~1Ii.Mi BW~eII4 'TO B 3TOM C.jiy'ae, Kpome -- 2 k, MHWKH~enb q~cjia n. MbI B~aejjm, p 2(q, -1) k moryT 6blTb 6JxaroHpH5iTHbimH enme 3Ha'IeHHH p =+m~ KOTOpb!M COOTBeTCTB~eT XaBa LumKJa nOpffIKa Pa36epemi morynLI'e BCTpeT14TbC5H 3.aeCb I. mn -it He eCTb CTeiHeHb JiBOflKH. Toriaa eah1HCTBeHHblm 6JIaronpHR!T~b!M 3a~H~'Hmm p 6yaeT CJ1YWHTb p = 2)- k H Mb! 6yiaem HMCTb: u=q1' 1, OTKyaia p = q, WIO HeBo3MoWvio. To~fHO TaKweK B Cxryqae p1 = 27 mb! rHoJy'IBM q = 3, 'ITO ofli!Tb HeBO3MO)KHO.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 177-196 Image - Page 177 Plain Text - Page 177

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 177
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/196

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.