Osnovy teorii Galua.

18-q V._Ypoeneniui C 3UXIatnbLMU epyflvimu___ Hccnie~ayem rpynny 17ajnya OJ1HOrO 143 MHO)KHTeJnef BITOrO ypaBHern-n, Haripumep (6.5) xV-i M x2 X ) O B o6Jna,.TH pa1Ij4HoBJbH0CTH K( M~i) 3. fHpehiBapHTeJ~bHo HccJIf_!lyeM, Ha KBI(YIO CTenelib flpOCTOrO ml~cnia p aie-.TIFTCR 6HHOMija.ThHblf K034)4)HIu~eHT C],,, ecnH in 11 eJLIJHTICH TO4qHO Ha k-yio CTe1JeHb p, S - H-a 1-yio CTeI1eHb p ti e ciiii _~P. Hmeem: (6.6) C =M - -_ _ _ _ _ _ __3,aeCb B H4HCJIffTene 14 3-ameHlTe~ne fiounHPcaHbi Japyr HOJ JIpyrom MiWHOI4 -TeJ1H (3a i-icKiunlOeHflem mHO}KHreJm5 In B 'IMCJI1TeJe 14 S B 3HiamejaTeJne),.nenmri~uieCI Ha oaHy 14 Ty )Ke CTeneHb p. B camQm ejjeie, B CH4TIY i < S _P 4H1CJO i J4eJIHTCH Ha 6o~nee H3IM I0 CTe11eHb Hl~M n: C c. pi, (c.9 p)=1 t <k. H0BTOMy Li4cjio m-i )WJI14TCf T0)1~e TO'4HO Hia pt, H TaKHim o6pa30m C., ejJiM11TC14 Ha TV we~ CleeHefb J), 'TO Hi tiaCTHoe - 'loceJI, CTO$I-W4HX B '1HCJIH4 -Tene 14 3HameHaTeJae Bblpa>KeHH45I (6.6) 6e3 napui. TaKHM o6pa3oM Cm8,aJIH11TC14 TO4IHO Ha pk4. HlyC~ p - OhLIIH 143 MHO>KHTejiei4 'IHcJ, Fin, H flyCTb M = p MIn) rie ml B3aHMHIO-HpOCToe c PI t114C.To. Paauo~iM KOPHH4 ypaB1IHIN5 (6.5) no CTenHH5M P. HOIOI)KM x - s + ap. rae e 14 a - B3aHMHO-npocTbie c p 'I"cia, 14 nOACTaBHM B ypBe~ (6.5). Hlpui 3TGM 6y1LeM BbI[II4CbIBaTb TO.TIbKO,,Onopnble" 4J1eHbl pa3JIO)KeHigI, T. e. TaK~e, y K0T0pb1X HOPSMKFOBbIe 'IHcJaa HPI4 HeKQTOpb1X 3HaqeHH51XP p>, 0 M0rYT 6bl~m MeHbwle, qem nopfIlaKoBhie qHHcJa apyr14x qIJeHOB.,,He-oaoplbiee" qnIHbI He 0IOKaWT HH4KaKro BJAkIIHWI Ha IIOCTpoetHHe MHooro~PJibHHKa HbfoToHa. PaccmaTpHBasH pa3Jio}KemieC qie~a (s+ ap P)m, Mbl YBWLL1HM, H4TO B ero uineiiax C., 8&ens aspps nH~ IIOCTene~HHOM yBeJIm44eHHH1 s ero HO~HJ1I(OBoe 'IMCJO M02KT pa~CT1 6uarouRapq M.HO)KHTeJIIo pP& ti y6blBaTb 6ularouaapH MHOfCi4TCJIio C,,,' HppH 310~ MnrpH 1 I s < p C.' eJIlJ1TC11 B CIJ1y 11. 3 iia Oa~ H Ty x~e CTeHeHb P (Ha k-io), a pPS - Bce H-a 6oumrnlyto C pocTOM S. rlo3ToMy 143 BIIX 'IJIeHOB,,onopHbIM" 6yaue TOJ~bKO quieH- c -s =1. TO4HO TaK( we 143 'IJaeHOB C S <Sp2 MHOWK1ffeJb C,,,' aej114TCR110H KpaAiHeA mepe Ha p, 11 n1liTOM C],P'.ileJiTC~1 T014HO Ha p, a COOTBeTCTByIOmiiLI emy MHO)I1HTeJRb PppP- Ha camyto HH3143I1O CTeneHb p,) B cH.-iy liero 143 9THX 'IJICHOB,,onOpHb1M" 6yaeT TOJIbKO 'IJaeH C S = P. 1H T. a.,OnopHbie '1 ijieHbl pa3JM)1CHH (6.5) 6yJayT TaIKoBbl: (6.7) (sa - 1) + C is In-1ap P ~ +.~C~j mPE pa PpP?) + +... + C2 ntp2 P'2 pP2P. + ~~& ~ a~ ~l~~P + C,,PkFm-7 aPpp~P +. n I~~~n

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 177-196 Image - Page 177 Plain Text - Page 177

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 177
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/192

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.