Osnovy teorii Galua.

184 184 ~~~V. Ypae6nenuq C 3a~aHI-tbAiu zpynnamu YpaBHeHHII~ (5.4), (5.5), (5.7)H (5.9) y1IOBJIeTBOP,910T yCJ1OBH$1M KpHTepH5~1 93~eHiMefka. '4To6bi y6eaiwTbCfl B 3TOM, nno.TiOHm an, 9T14X C.UyqaeB COOTBeTCTBeHHO p = 2, 3, 5, 7. Boo6nme ec~ni B ypaBHeHHHI (5.1) n npoCToe 4HcJIo, TO ypaameHi~e ya~eBPe yCJ1OBH5M KPHTepH% 9h3eH~liTetlHa ripH p — n. YpaBHeHfie (5.6) timeeT npHr p = 2 cneayioum~e HO~pULKOBbie qiC~na: 4p, 2 +a +3p, 2 +P+2p, 3-F-+ y p, 3, uae a >- 0, f>0, T >- 0 (nona3aTenHI CTeIneHeIf1, B KOTop1JX 2 BXOaitT B rniciia g1, g2, g3). BbIqepT14B )uiarpammy (cm. ~ 4.4), Mbl HafJtem jgniq p eaLIHHCTBeH3 Hoe 3HaMeH14~p -i OTCioaa fia oCHOBaHlIH Teopemb1 94 cnieuyeT, 'ITO0 ypaBeHelme (5.6) HerlpHBOaMMO. YpaBHeHHC (5 8) wimeeT npH p = 2 caieayioiaue HOPR1JKOBbI e l Hcara: 6p, I+c + p,1+P+ 4p, 3+ I+ 3p, 3 + +2p, 4 + 1 p, 4, rie a >0, j > 0, ~>0, >0, s0. EcJIH ripu aiTom P > 0 (T. e. ecCiH g2 2 JLaeIHTCH Ha 2), TO Mbl I1OJIY'IHM JXl51 p 3Ha'IeHHe p =y3 OTCtoata cieJayeT, 'ITO pa3JIo)KHH51 pa3o6bloTCYI Ba aTBa uwi1.Ta 3-ro nopsLLLKa. ECJH we( 0,TO MbI rIonTyqHM xuJIs p JUBa HaxIeHHSig: p== — =~- T. e. pa3ilo)KeHH45 pa3o6blOTCSI Ha LLHKJnbi HOP5lJKOB 2 Hi 4. HpiH p = 5 IlOjPl~KOBbie trncja 6y~AYT TaKoBW: 6p, ~+ 5p, I + p 4p, 1 + y+3p, 1 + +2p, I + +p, 1 3JaeCb flpH ah> 0 mbl 6yJaem HmeTb p = ~,a rpip ci 0 -0, P2 = -5- B nepBOM Ciiyqae HeflpHB3OJHMOCTb olieBHJUHa. BO BTOPOM >me cniyqae o~a cn'ex~yeT 143 TOrO, WIO B CMAY Teopembi 94 ypaBrnerne (5.8), C OaHOR1 CTOPOiblb, mo)KeT pacHriaaTbCfl TO.UJbKO Ha He~HPHBOJAtMbie MHOM(~eHTJ4 141 H 541 CTerneHeft, a C JApyrOfl CTOPOMhI, B cixjiy pa3JI-O)KeHFI15 I1pH p =2 HO He moxceT coXUCpKaTb JIHHefHbbix MMOKHlTeneA1. YpaBneHHe (5.iO ) npii p 2 HmeeT caieayoionie HOP5ULKOBbie 'IHCJIa: 8p, 3 + + 7p, 3+ + 6p, 4 +iT+ 5:, 4 +?~4p, 6+ E+ 3p, 6 + + 2p, 7 + + p, 7. 39T0 JaeT Ham p= - 7, OTKyXLa cpa~y caleJyeT, TITO ypaB~e~iie Henpii 3. O6pai'iiMCs K Teopeme II Illypa. EcviH- Mbl YMHO)A(HM rIOJ1HHom E,,(x) Ba nt!, TO nlOnyq'Hm nIOJHlOM KOTOpb1tk yJLOBj1eTBOpsieT YCiIOBIfM Teopemb 1I. Kpome Ti-or, 6ep51 B Kaqe~CTBe moJayJI( pa33JI14Hb1e npOCTbie 'IIIcJa, Be [1pCwbI1IImiOLLH it, mbi mo)*em y6eAUHTbCS, 'ITo rpyrnna ra.Tya (1ypaBHeHiis (5.11) COaep~KIHT nOJICTaHOP3KH ix.KJIeHHbIX THrIOB, t1PHCYTCTBHe KOTO~b1X B (8) o6Hapy~xlBaeT, 'ITO (WcoJaep

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 177-196 Image - Page 184 Plain Text - Page 184

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 184
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/188

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed June 22, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.