Osnovy teorii Galua.

~ 3. Ypaonenuiz C 3adaHnblmn opynnamu17 175 TOMY o1AHa H3 41yHKLUHR, conpsiKcHHb1X C Cp, HeAX0JDKHa H3meHflTbCfl OT MTAt MAiCTaHOBKH H cpaBHHma 110, MOJ1y111O p, c pa1UHOHaJbHb1M qHcJIom. EcaH paLIHoiiaJnbHb1X KOpHeft HecKOJIbKO, TO MbI Bbi6epeM TOT H3 HHiX, KoTOpbIft flpFI nojiCTaHOBKe B (3.8) xtaeT cpaBiieHiwe He Hm~eiouxee Hf ojuioro, paLUH0H3JbHO KOPH5A. CyHteCTBOBaHiie TaKOrO 3Ha'IeHHH (T BbITeKaeT H3 Toro, LITO rpyrina cpaBHeHHsi (3.10) H3OMOp4PHa c LLKJ1H'IecKofI rpyrnnoll, o6pa3oBaHHoli CTenHeMH~i n1OCTaHOBKH SHe OCTaBJIHioumeft Ha meCTe HH QaojAo 11H4)pbl. HIocTyna5H TaKMm o6pa3oM C KaI)Jbim 143 moIuyJeil p~, Mb! HOJI~4HNMR11$ (p psm cpaBBeHvtIA: p c' (mod pr), cp (T" (mod P2),.~ ~ s mdp) Go~rloCTaBrnmfl HX C YCJ1OBH5IMH (3.9), Mb! Hoj1y4Hm aI51H K034XkHIiuHeHTOHa Al, A2,.. An nOJHHOma f1(x) H J!JI I BeJIHtlHfbl (p ciieiyionm~e Bb~pal>KeHHSI: (3.11) Al ==a, iPt1, A2=-a. +P12. A = a n+Pt n) rme P =PI, P2, a, p,, a2,., a n, 0 1TOCTOHHHb1e LLeJbie qica' a to 75 tn U - OCTioLuAMc51 rno~a Heon1peJLeJeHbimH nepemeHfbie, MoI'ym1He InpHHHmaTb TOJ~bKO Lxenlbie paUHOHaJ~b11b1 3Ha'IeHHSI. By.7Lem paccmaTpHBaTb ypaBHeHHe (3.7), KaK 3aBH4CHMOCTb me~h(,a KO.94)IpHLLHeHTamH Al, A ' A~ Ht BeniH4 HHOR1 (p. [1oJLCTaBHM B Hero BmeCTO BeJiH4HFI Al, A2,... A, (p HX Bbpa)KeHHi (3.1 1). [IoniyqIaeTC51 HeonpeAe-~ nTeHHoe ypBe~i (3.12) 4)(tl, t2, tniL~ U) ==O. ECJIH 0Ka>KeTCH B03MO)KHbIM yJaoBJIeTBOpH Tb 9TOMY ypaBHeHH1O LCienImH paLIHOHaJIbHb1MH 3H3'ieHfiIMH t, t2 ) tn U) TO, la BR T ee~ B Bb1pa)KeHH11 (3.11), Mb! nlOI~y4HM KO31frIHLiieH~bi Al, A2,.., iAn ypaBnieUHI (3.5), r'pynna KOTOporo 6yxteT Mi3oMOpt43Ha c 0i. ]iJeACTBfITeJ~bHO, ypaBHeHHe (3.7) 6yxleT mmuTb B STOM cjiyqae paiJlfotaJnbHbI$1 Kope~b, OTKy~ia cJneJyeT, 'ITO CI~YHKLLM (p paB~~a paU[MfOHJbHOMY 'IHcjiy (npHnaiaReH~aaefI HymepaUMiH KOpHell). Ec-au Mb icKJIioi~mM cany'iaf, Korila ypaB~eHiie (3.7.) HmeeT Kpa1THbie KOPH.H, TO OTC!oJLa cmo)KeM 3aK110LIHTb, 'ITO rpyrira ypaBHeHHI (3.5) H30MopC~Ha HilM C (5), HRH11 C KaKHM-HI-6yilb L1eu1HTejiem (5. C itpyroft CTOPOHbl, HH OaLHO 143 ypaBHeffHl (3.8) He mo)KeT HMieTb paUIMOHaJfbHbIX KopHefk, TaK K31a( JLa)Ke COOTBeTCTB1oLL1He mM cpaBHeHHI45 (3.10) uHe HmMeOT paLIHOHaJ~bHbIX KopHefl. OTCioiia cileiyeT, 'Io rpynuia raiiya ypa1BHeHHH $ (3.5) He mo)KeT 6uTb aTeliHTeJneM H414 OJ1HO1 113 noWipynn ~, (02,.., Ho Mb! Bbi6paJIH 9TY CM4CTemy noJJrpyff TaK, 4qTO6bI BCIKlifl aIeJHTeJlb rpynriu (5, He 5IB11q!ILIHflCff LaeHTeneM Hf4 OAlH04 M3 rpyrin 013, ~3S) I., B TO4HOCTH COBHnalaJI c (5. Ho03TOMy rpynina Faiya ypmBHlHH11 (3.5) TOIHO 143oMop4)Ha C @5, q-. H T. al.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/179

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.