Osnovy teorii Galua.

172 V. Ypae-nenun C 3ada~nblmu epynnamu Boo6Ije He MO) wT 61b1Tb HMnpHMHTI4BH~tl, a nOTOMY B STOM cjiyqae HeT Haxto6H-ocT CTaBHTb yCJIOBHem o6JaaaaHHe iwHKJom (n - 1)-ro nopHixua. 1110 KacaeTCH orpaHH'4teH IVA, H-anaraemoro Ha BetI'H~HI-y npo0CTbX MOAyJaetf, TO03Jtecb emy nloJV1e>KHT TOJnbKO To ripocroe 414C110, KOTOpoe COOTBeTCTByeT TpaHCUIO3HLLHH. B 3TOM cnyqae LLHKneHHEb~ft TIHf HmeeT, BHAL I Zs=(2) 1,1,..., 1), flHpCme eAIHHLaa BXOAIHT n - 2 pa3a. 14T06bW CyL1eCTBOBaJ1O He MeHee ii - 2 pa3J1HqHbix no MOAJlfhI0 p JIHHeklHbIX HOJIHHOMOB, J1OCTaTOqHO orpaffl4Hlm p YCROBHem 5. 1 pHi M e P. llOCTpOHTh ypaBHCeuie 6-fl CTenHtH1 6e3 aq4M)eKTa. ALa14 IHKJneHHorO, T1Hna~ (6) BO3bmem p, 2, ~Ani -2 (55 I) - p'2 =3, AW = (2, 1, 1, 1, 1)-. HenpHB0AHMblHi no, N10,aymo 2 nomiHHom 6-f CTefleHH Xoao)KeHl 6bJTb aeaH~eJem HOJIHIoma x26 -x = x (X68 - 1). 3TOT HoIIHHOM coaepWHT ejite JIHeii"hie, iBwaapa1Hbe H Ky6HqiecK~e AeJIHTeJIHw JlHHefiHbie HOJIHHOMb] Bxoqq-r1 TaKH{C B x2 - X - X (x-1) Ksa.IapaTwe-B X 2 - x =x(x3 -11), Ky6w~eC~ne -B x2 =X X (X7 - 1). I1OJJHHOM K 1 _ + 1 6yaiytrn A!VJUHTCeem HOJIHIoma x(X63-) B TO WeC Bpem$1 B3aIMIIO HPOCT C HOJiliHomamH X (x -),X (X3 - 1 4X (X7 - 1), a HOTOMY mo}KeT cojepAaBTb TOJ~bKO HeI1pHBOAHmbeI Ho moayuJo 2 Ae.4IHTAH 6-fl cenemu. CTaJIo 6I1Tb, OH neHpHBOAIIM 110 M0Ly.1o 2. IlOBTOMy mu mo}1(em noOAOHTb 1(x)=X6'+ x3 + 1(mod 2). [lo m~o~ayao 3 noaIIHOM 1 (x) aoJI)xeH pa.3jara.TbCq Ha JnwiefiHbilf HOJIHHOM H1 HeBPHBOJAIM5f HO f0HHOM 5-fl CreiieH. OqHUH 143 Ta]KHX IIOJIHOMOB 6b1.n HaMH ywe iiaflAeH B3 n. 3. H4CXOJqHI13 Hero, mbI mo)*Cm HOJIO}KHTb f1(X) =X (XI, + X4-x ~XSX- 1) (mod 3). HafcoHell, Ho V0JoayIo 5 nOJIIHHM f (X) 40Ixoien paanarambC$ Hia 4 JIHflefilbJX HO.51H-!IQma H OALHH HenpHBOJLHMb~fl KBaJapaTHb1Hl IIOJIIOM. flociieAHHrnAoi OJH(eH 6blTb xReall-8 1 4 + I. 3TTBJH OM eH'T npoCTO pa~aaaraeTcH Ha KB2ApaT~bIe MHO>KHTeAlH: X I= X~1 x- 4 -(X2 + 2) (X2 -2) (mod 5), KOTOpbie B CHJIY Cfcaianoro aouKj1(1w 6WlTb HenpHiBOAHl~bl. IIO3TOMY MWi mo)1em no-.I1O)KHTb f (x) ==(x4- )(x-+ 2>=x6+ 2x4- X2 - 2(mod 5). ConOCTaBAsR1 Bce Hakae~HHble YCJIOBHISI, MbM HlOJ~y'IIM cjie~yioutyio CHCTeMy cpaBHeiHfl AJll 1{oq4kpiLUieHT0B Ai noxio~mHa f/(x):, Al 0, A2~ 2, A~s 0, A,& - 1, A 5 o, As - 2(m od 5). Pewzaff 3TH CpaBHeHHq, noay'uHM: Al ==10, A2 =-2, As_- -5, A4 -6, Ar, ---lo,' A6 ==3 (mod 30). TaKHm o6pa3oM BC5IKoe ypaBHeHHe X's +(1O +30a)x + (2 + 30P)X4+(-5 + 3OT)x8+(- 6+ 306)xs + + ( — 1O+3OE) X+ (3~+30%) = O we a, P# T, 6, s, )% JpoH3BOJlbHbwe iueane qrnc.aa, HmeeT B xaqeCT~e rpynnu railya cHtMMeTpH'lecxyjo rpynny.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/176

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.