Osnovy teorii Galua.

~ 3. Ypa~neuiiu C 3adaHnblMu opynna.41a17 1 71 pa3J1araeTCS1 Ha HeflpHBOA~HmbIe no M0JAYJII0 3 UOJIHHOMbI 5-il CTeneHH. B camom X'0 ~ X9 + x8 + X7 + XeO + Xe -F Xe + XS + X2 -4- X + 1 -EE(X5 + X'-X3 + X2 - 1) (X5 - Xe+ x2 - X-i) (mod 3). B icaqeCT~e P2 Mb! He MO>K —M B311Tb tlHcAa 2, TaK KaK Jais p = 2 HmeeTr meCTO g (2)'= 1, B TO BpemSI KaK AnA1 HaC Heo6XoJU4Mo g (2) >- 2. Bo3bmem p2 = 5. Torua Ham I1pHJUTC5I HaaHTH HenpHBOIJJMbIl 110 MOJIYJHIO 5 MH0)KHTeJlb 2-11 CTe11eHH 110O2IHHOMa X52 x - XX (X24 -1). Bce JIIHHerlHble MHO)KHTehIH RJUO.TKItbJ BXOJAHTb AJUIHTeJ151Ml B 1OAIHHOM Xe x, a [IOTOMY HIOJIHHOM X= x'4- x2a -1 1 ojUOI)KeH pasnaraT b~fl Ha He11pHBOAUHMbie 110 MOAY3UI[O 5 110)21HH1Mb! 2-11 CTeneHH. B camom Jteae, X4 + X2-j- 1 = (X2+ X + 1) (X2- X-4- 1). TaKHM o6pasom YCJIOBHSI HamiefI 3aULqH 6yhlyT BbflnoJHeHbi, ecmi~ Mb, HaUnpHMep, nOJIO)KHM: f (x) x5~+x4 -x3 +x2 mjod 3), f (x) x (x + x2 +1) (mod 5). f (x) =5 Xe Aix4 + A2X8 + A~x2 -H A,,x + A,5, InOAqy4[M JRl1 KOS(4pHLuHeHTOB Ai czieayiounse cpaBHeHIIq: Al 07O A2~ 1, A3 O, A,, -1, A5~sO-=0(mod 5). Peniag 3T CHCTemy CpaBHeHHHif, floJly'IIIM: T. e. f(X)=X5+lox'+11X3+10x2+6X +5(mod 15). BcnqxttHl HOJHHOm f(x), yJU0!IJeTBOPRIOLLHA 3TOMY cpaBHeHHIO, A~aeT pemueH~e nocTaBneHHo11 3aJ~aqH. 4. YpaBHeHHI t6ea at4)4)eKTa. H43JIoKeHIHbI11 np~Hem ataeT BO3MO)KH1OCTh cpaBHHTeJlbHO.nerKO UOCTPOHTb ypame~iie 6 e aa 4 4)e K Ta, T. e. c cHimmeTpHqeCKOII rpynirott ranoya. B ca1mom Jteae, cHimmeTpHqeCKa11 rpynna co~uep)KHT 11OJICTa1HOBKH BceBO3MOIKbIX IbX HKJ1eHHbIX THRIOB. C iApyro11 CTopoHbl: eCJIH rpynna CO11ePM(T n10XCTaHOBKH4 Tpex cJ1iJLy!oLL~xU4X HKJIetiHfX THn1OB 1) LU4K) fl-co nopexLa, 2) tuiKRo (n - 1)-co nop9,Rna 14 3) TpaHCrIO3HtUHIO, TO 0Ha1 Aojmi~a 6b!Tb cHmmeTpHqeCKofl rpyrinott. B caMOM un~ie, oHa TpaHi3HTHBHa, TaK KaIC couaepWHT LU1K)! l-ro, nOpHJUKa. CoJaepwa TpaHcroMIHIuO, OHa B CHJIY TeopeMbi 14 JAOJIKHa 6wlTb H4J1H CHMMeTpH~eCKO11, H4J111 HM11PHMHTH4BHO11. JiOfIyCTHIM, 'ITO OHa I4mnpHmHTHBLa. Kpome Toro, oHa coJUep}KHT ILHKJ1 (n - Il)-ro nopluua, KoTopblft 11PH HaJUJeKaiLaem cnoco6e Hymepa~uii KOpHefl mowKn 6bITb npucrawi~eH Tam: (1) (23..n). I~YCTb 1, cx2 %M**. M 65yJeT Ta. ee CHCrema lIMHPHMHiTHBH0CTJ4, B KOTOpOil J1eWHT 11114)pa 1. Torjia, cornraCHO onpe~ejieuuIoI lHlMfIHMHTHBfHOCTH, n0oICTaHOBKa (1) (23...n) xaoRi>a nepemeulamb Uli4)pbl %,) on..., am, mexmiy co6oft, T. e. coJLep)KTb LU4KJab nopnaJKoB< <i, B TO BpeM11 KaK B camom jAeje oHa COJUeP)KHT eIIHHCTBeHHblil LWKJ (n - l)-ro llop9AJKa. 3T0 11POTHBope414e IoKa3b!BaeT, tITo rpynrna.EOqDKHa 6WlTb cHmmeTpHtIeCKoft. BmeCTO Troo 'iro6ii CTaBHTb, B KaqeCT~e YCJ1OBH51 o6naJlyaHHe UJ4KJOM n-ro!1OpffIKa, mb! mo)Kem o6ecne'rnTb HenptiBOUHMOCM ypaBiieHH~ii RlpyrHM cnoco6OM, l-alpH~Mep n1PH InoMOIUB KPHTepHR 3113eHLHTeflHa, qTO npaKT!4qecKH CUHJ0H o6Jiec'IaeT 3aJaaqy. Kpome Toco, ecum n npoc~oe 'iiiCiO., To rpyntaa

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/175

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.