Osnovy teorii Galua.

~ 3. YpaonHeHwi C 3adaflnbiMu zpynnamu16 16-9 Bbix H HeK0T0~bIX ftpyriiX BHIIOB pa3peuitimblx rpyrni. JJm'1q ee pewueHHR1 cyL1xeCTByeT HecKOJIbIKO FnpHeMOB, H3 K0T0~b1X MbM riojrpo6Ho OCTaH0BHMCH Ha OIaHOM, npffuaaiiewau-tem Bayqpy (M. Bauer). 2. Byiaem 11oa [HKJIeHHbIM THiftom n-fl CTe H eH _ =(ni, n2,. -, n7,) no0HnmaTh C0B0KYflH0CTb n1l, n2,...,- n,, LLejibix nonoic4KTeJlbHb1X Hnceji, aaioLUIIX B cymme fl. HIpH 3TOM mbi 6yaem roBopHTb, 'ITO HO01CTaHoBKa [IP H Haa nheW{HT K 1KIIaeHHOMY THiffl Z (n1, n~.. nik), ecJ1H OHa COCTOIIT 113 Uj1KAOB nOPUU(OB n1, n2,-... nk. fHyCTb 3aIaaHb1 iJKIeHF~bie THMib Z1, Z2,..., Z, n-fl C~eneHHi. Tpe6yeTRcs I1CTP0HTb ypaB~eHue n-fl CTerieH[Ii, y ICOToporo rpynna ranya coaepwcana 6wi IIOACTaHOBKIH Kawa~0or 113 3aJiEHHbIX 1LHKJqeHHbIX THHOI3. A-URg 9Tror B03bmeM s Kawltx-H146y1b flp0CTb]X 'Hcei PI, P2,.'- p, P (Htiwe mbi orP0B0~HM orpaHH~qeHffe, KOTOPOMY MbI )jOJIKHbl ix n0Ja4HHHTb). lloIL6epem nojIHHom ftx) Tai, 'lTo6bI cpa~iietlme f(x) 0 (mod pi) 110 K3)KJomy 113 MOJayJneh p1(i = 1, 2,..., s) HmeuIo rpynny Faniya, o6pa3uBaHHYIO fl0ORCTaHOBK~flu[H1(JIneHiorO TuIM Zs H.IyCTbs i - n (i n~i),.. nk W Hatt~eMH~fP11~l1~b1~110MO~.T10 pIIJI"HHOMbl Tp'x, (XIT x7 pTk X) CTenieHeft n1 ), n,.., )n noatoepem noflOiHOM fkX) TaK, WIoubi itMeIIo meCTO J141 3T0r0 HY>KHO, Ii~o6b Koa()i~iiLLi~eHTbl IO1101HH0ma f(x)=-x' + A~x' +.+ AnX YX40BJ1CTBPHJH cpaBeHWMM rae x" + i Xn ~ I. + a~i) -c(i)(x) y(i)kx)... X) 1 n 1i 2 h HoCTyrian TaK c Ka}KJ~bIM 143 1JHKJ1eHHbIX THnIOB ZS,, ZJ2i.. ~ H COOTBeTCTBY10LIXHX 11M 11P0CTbIX 4HceJI PI, P2,- -.9P., mbi noIL4HHHM K0OX4rnHL11eHTW, flOJIHHomaf(X) C 14C Teme cpaBHeHHtl ciiexaytoulero BHJaa: Al al", A2 a~,- a ""(mod P2), (3.1) An n A~(odp) -Alz ar'), A2 ca(s), A~ a(s) (mod p8). 3mH cpaBl-elHHH pewaiaoTCH TaK. FlycmL, manpHmep, 'rpe6yeTCil tiafflm1 K034 -4MiUIMeT Al, KOTopbIrl Y)10BJ1TBopsieT cJaeayioawef CHCTeme cpaBHeHIMt~ (3.2) A1 = -a1' (modpj1), A1, — aj'(mod P2), -., A1 =a(8) (modp.v). H~pea BapHrezbllo HaflaeCm peuieH~e CH4CTembJ B1'- I- -(mod p,), Bt -s3(mod p2),..., B1' —O(modp5,).

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/173

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.