Osnovy teorii Galua.

~ 2. Fpynna Faiya cpaonen-uil 6 167 T e op ema 90. Epynria FanTya cpaBHeHfI4 (2.9) eCTb JaeJHTeJnb rpynnbi ranTya ypaBHeHHIHB (2.8). 4. H1piM~miasi BO0 BHIiMaHI~e CTY~p rpynairi [an'ya cpaBHeHHHl (2.9) (Teopema 89), mbi mo)KeM Bbipa3i4Tb Teopemy 90 caeapyoummi o6pa3om: Teopema 91 (OteJeKIIH~a). Eciii jie~aa%4aCTb ypaBHeHH5I, paccmTHams no KaKOMy-HH6VhIb np~OCTOMY MOJAYJIIO, He i3XOJLBLLemy B J1HCKPHMHHaHT 3TOFO ypaBHeHHH, paauiaraeTC51 Ha HenpH4BOJUImbieMFIOWHITeJii4 CTeneHe~if nl, n2,..., n,,, To rpyrira ranya 9TOrO ypaBBHeHI coJIaepKHf-nOJACTaHOBKY, COCTO51IL~jIO 113 [UHKJIOB TOHOR1JKOBfl1, n2 k 5. YpaBuieH]nsi AzejeHHfl ipyra. B Ba~re np~mepa paCCMOTpHM ypaBHeH1Ie aeneHHR Kpyra:.1 ~~~ ~~Xm= 0. Mu! y)Ke BHaenjH (nMaaa III, ~ 2.9), 'ITO rpynna ranTya 3TOFO ypaBHeHHsi eCTb a6eneBa rpynna nop51Rn~a p(in). BEMICHHiM, KaKOBbI Aomnicrw 6bl~w HpOCTb1e moap~ia p., Jat3IOH4IP TO HuIH NHFoe pa3JIo)KeHHi~ HoJIH4HoMa Xm Ha HenpHBOXLHmbie Ho MOLLJY11O p MHOIKHTeuIH. B a6eneBoR rpynnre LLHKjieHHbIII COMTB HUO~CTaHOBKHI BHIOhHe onpeaeigAeTCR ee nOPSJAKOM (TaK KaK B CHiJqy Teopembw 12 ee HIOACTaHOBKH COCT05HT 113 IAHKJIOB paBHbix flOp51JXKOB). HOWoMy Hiawa 3aaiaqa npHBOILHTCH K HaxoH(iKi~HHIO rHOPRiKa nOJACTaHOBKH, o6panyfouwe rpynny Faarya cpaBHeHHR (2.12) X.7H 0 (modp). MUz BHJaeJH, 'ITO B KaqeCTBe TaKOfl nOaCTaHOBKl4 MO)KHO B35ITb HOJACTaHOBKY, rnepemaoim~nyio KawKJbIfl K~opeHb aL CpaBHeHH151 (2.12) B KopeHb a"1. TaKHM o6pa,3om HOPfIJOK 9TOft -HO,4CTaHOBKlH pa~eH HaI4meHbweImy HOKa3aTe~ino f, ~amoulemy P_-a(o (2. 13) a1 amod) BeuwrnqtHa cx yaLoBorieTBop~er ypaBHeHH[O X' - 1 =0; HO3)TOmy ecrn f eCmb TaKOiI nioKa3aTeJlb, LLJH KOTOPOF HmeeT meCTO mm I (mod in), TO TaK WIO cpaBHeHHe (3.13) yawBiteTBop-qeTCfI. C apyroft CTOPOHbi, ecHii CL eCmb KOpeHb ypaBHeHHlil (2.1 1), TO AIpyrHmI4 ero KOPHOMH RBJLIOTC11 BeJHIH4HIbl a0, rae c npo6eraeT Bice 3HaqIeflH4, He npeBbwmatolL~e Mn H B3aHIMHO-npocTbie c in. ECJIH p'r * 1 (mod in), TO p/, 6yalytii B3aHMH0-HpOCTbIM C in [mbi a1onwIuKb HpeijLHoh1OKHTb (p, M) =1,cpaBHVNIO C OJLHHM 43 5TI4X 4HceA c. [lyCTb Pt- c (modrn). Tormta OTKy~a BHJLHO, tITO f-H CTeneCHb HaLueft!1OJCTaHOBKti nepeBAorT Kopet1b CL B aipyroil KOpenb cpTiBHeHM9 (2.12), T. e. OT.TIHtIHa OT ToKwteCTBeHHORt HOUci'aHOBKH.1HTaK: T eop e ma 92. EcAHi f eCTb, HaHimeHbwtiHA nOKaaaTeJ~b, )iamou[Wti TrO nOJIHHOM X,,, pa~auaraeTCi Ho MOJLYJ1IO p Ha HeHpHBOJ1HMbie MHO)KH4 TentK CTeHeHH f.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/171

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.