Osnovy teorii Galua.

166 166 ~~~V. Ypa6enuef C 3afdaHHLmu zpynnamu ITOm~~, i1OJb3yHCb c~OPMyJAOf UHemeMaHa, 6yJ~eM Hmemb: fp (a.)]~ ( (a') == (p(a) (mod p), OTKYJ~a mbi 3aKjuoqaem, WqTo( (ci) siBmieTC1 K0PHem cpaBHeHH115 xP' x (mod p). Ho KOPHH SToro cpaBHeHHKI Hcqepni~hBa1OTCS1 95IAOM 0, 1, 2,..., p -i, a noTOMY BeJIHqtiHH (p (a.) 1)aBHa O1HOMY 113 9THX pa[LoHiaJlbHhX 'rncenl. TaKHM o6pa3oM rioie BeJIlIqHH, Hie meH5111OHLHX flPH nl01CTaH0BKe (2.6) (H ee CTenleHRX), eCTb nose- pauLLHaOiHWhbhX Lmcenl, e CHAY qero rpynria ranya cpaBHeHH115 f(x) 0 (mod p) eCrb lIHKJwiHeCKasi rpyriua, O6pa3OBaHHasi CTenIeH5MH rnoA.CTaHoBKH (2.6)). HMa<: Te o pe ma 89. Epyrira ranya cpaBHeHHSI (2/f) 1(x) ==O (mod p) eCTb UHK.4KHqecKasi rpyrina, o6pa3oBaHHa% CTene~H5MH noXLCTaHoBKH, coCTo51ujeig 113 LLHKJIOB fI0PRUK0B nl, n2,... -, n,, ecaH f(i) pa3anaraeTCR 110 MOaiyJ1O p Ha pa33JH4qHb1 HeIIpHBOAImwbe MHO}KHTeu1H cTerreHeit nl n2,. nk 9. Csius, me*KAy rpyinnaMH raJnya ypalBHllHH51 H cpaBHeKHji. PacCMOTPHM OA~HoBpemeHHO ypaBHeHHe (2.8) f(x)=O H cpaBeHner (2.9) f(x) — 0 (m od p). 4T06bJ floCTPOHTb rpynny raaiya ypaBHeHHS1 (2.8), rnepe~ymepyem ero KopHHw XI, x2,.. Xtl, H rIOCTPOHM ero, OCHOBHbwe MOAJlyH: HOPHSIMII KOT0~bIX M1BJ1IOTCH COOTf1CTCTBeHHO XI1, X22..., X-n H4To6bi HOCTPOHTb OCHOBHbIe moJLym1 an15 CpaBHeHH51 (2.9), elx6epem B KaqeCTie rnep~oro moap~Ivi?p1(x) KaKoRt-HH6yab Ria Hel1HBO2IHMb1X rio MOJiy.71 p MHlO)HTeneff IOJ1HH0ma f1(x); o6o3Ha4Hm qepe3 x1 KaKoft-HH6y21b 113 KopneR CpaB~eHHSI (p(x) 0 ==(mod p). JIaanee o6o3Ha4Hhi qepe3 (p2(X; XI) KaKoft-HH6y,4b ttenpHriojxHmbA rno MOaJ1IJO p B HOJ1ie K(x1) AenJHTeJnb nOAIHHoMa fAx; x1), a qepe3 X2-KaKofl.HH6yJ~b 113 tcoptefl ca3BHeHH11 (2(X; XI)~ — 0 (mod p), H1 T. i4. HIPH TaKOM crioco6e napannuehnbHott Hymepa31iHH KOpHetl (2.8) H1 (2.9) B~C5l(Oe COOTHoUweHHe mex)yK2 1OPHRMH ypaBHeHH5if (2.8) 6y21eT HmeTb meCTO TaKH{e me)I{Jly KOPHRMH cpaBHeHHF1 (2.9). (3rTO cirle21yeTr HS Toro, wro., KaK MUi BHJIeRJH B rnatie II, ~ 4, BC51KO aoe Tao OOTHlowef-ite mo)*(o rlpeAlCTaBHTb, KaK Al41Ieftlty1O KoM6imaLLHIo OT COOTHOwIeHHft tix Xi 2,. X., x i 0, H B TO wKe Bpem5I MOALYRH cpaBHeHH5I (2.9) 51JSMIROTC51 AeJ1HTen5MH mo21yneift (2.10). Ho03ToMy BcasiKS riOjC~aHoaca, tie Hiapywaiouxasi COOTH~weHHft MeWA2Y KOPH51Mti cpaBeHeHRns (2.9), Hie iiapyuwae Tak}Ke COOTHow~eHHlft mewKJy HopHRMH ypaBHel-HHR (2.8), eCAHr TOJ3bKO. mub 6y~aem co6.ntoiam yKa3aHHwdk napan'nTeJIH3M I1PH HymepallHH KopHeR. OTCio21a MbM 3aKnlioqem:

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/170

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.