Osnovy teorii Galua.

~2. rpynna raflya cpaenienuci 1 163 11. fp H Me p 2. HIyCm p =3, m=-2. 113 4iopmyJHw (1.7) MUl Hmeem~: 9 2 - g(2) +g(l), CTKCJ~a g (1) =3, g (2) =3. Paaaojicim noOAHloM XPm - X = X9 - X Ha Hen1pHBOAHMbie MHO)HHTeAHI:.X9 -x= X (X2 -1) (X2 +1) (.x'+ 1). B STOM P23.110)1eHHiH nillOJIHM X2 + 1 JaoqyKeH 6bITb HenpHBOIHM no MOayjHio 3; JIOJIHHOM )Ke x4, I 1 Jon0KeH pa3jiaraTbCf9II11 MOAYJIio 3 Ha MHO)KHTeJ]H 24A CTeneHmf. l1TO6bI HafiTH ST0 pa3.uo)KeHie, pa3~Aemm X4 + 1 Ha InOJIHHOM x2 + ax + b, uje K094)(HLIHeHTb1 a, b Mbl OCTaBHm noKa lieOnpeAejleHHbIMH. flpiipaBHHBaem Kos4(PIHuHeHWbM noayqaemoro B OCTaT~e iojimHHoma Hyalio: a(2b -a2) = 0, b2 — a2t' + 1 =;=-0 (mod 3). lp~paBHHBalI B nepBOM CpaBHeHHH Hyalio nepBbli4 MHo)KIITeJqb: a ~~ 0 (mod 3) mbi npmHXOA1HM K HeBO3M0)KHOMY cpaBneHnio b2 +=1 -0 (mod 3). flphipaBiHtBan Ke HYAH0 BTOpOiR MHOKhITe.4b, nlonyia eM: b - a2, a" +a2 + 1 =0 (mod 3), 0TKYA~~~~ a E~1, b -1 (mod 3), TaK WIO noHOJHom X9 - x pa~aiaraeTcal Ha HenHP1BOaHM14e no MOA~aIO 3 MHO)KHTeJ1H TaK: X, x-x x (X2 - 1)(X2 + 1)(X2 + X- 1)(X2 - X- -1) (mod 3). HeTpy~aHo IOHqTb, 'ITO Bcqxifi~ n1oJiHHOM, HeInpHBOAUIMNI 110 MOA~J1O p, Tem 6oaqee He1pHBoJAHm B O6bJKHOBeHHOM CMb]CJ1 STOFO cjioBaI (B nioae pLtHOHaJ~b~b1X iinceji). Y n p a ic H e H it e 37. )IoKa3aTb, WIO cyme~CTByeT Bcero 10 cneayboul-UX HelipliBOAHMmbx no mo)1Ji1o 5 IIOAHHO1MOB 2-f CTeneHHi: x+ ~2, X2 -+2x -- 2 x2 ~2x -1, x9~ x +1, X2~+ X 2. Y n p a w H e H H e 38. J4oKa3aTb: ]ItAq Tror, tITo~b cpaB~eHne n-oii CTen1eHH f (x) -=0 (mod p) HmeJIo n paU~onaalb~tX KopHeH', Heo6XoAHiMo, 'ITo6bi imeJJo M~T p + q sq ~ 1 (mod M) a Sm cymma nw-x ceee oef3To cpaBHeHHII, nonyiyaemasi 113 H3BeCTHb1X peKy~ppHTHb1X 4)opmyal HbIOTona. 3T0 N~e YCAIOBHe AOCTaTOqHO B TOM cjiy'Iae,- ecaui cpaBnetIle HC HmeeT KpaTHb[X KOpHeft, T. e. eCJiH ero AHCKptHmihaHHT He Ae-JiTC51 ia p. Eoaee Toro, B E)TOM cqy'iae aocTaTO'IHO y6eAHmbCg B cupaBeJ~nI1BOCTH 4)OpMYqhI 11H q 2,2..,n -~1(C. 0. UlaTyIIOBCKHII) Y H p a W H e H H e 39. JJoiauaTb, WIO KOHe'IHNi noJi, iimeIOaHe OAHHaKOBbfJi nlopHIJOK pm, Ii 3 o MO 4i ( H bi, T. e. me)Kity Hix 8JemeRTMH MO)KHO YCTaH'OBHT6 B3aHMHO-OAH03Ha'H~oe COOTBeTCTBHe,- He Hapyilaiollteec)I ripH cjio)KeHHH H YMHo2KeHHH BJaeMeHTOB. Y K a 3 a H H e. PaccMoTpeTb Hen~piBOIHhibie no MOAY10JI p MHO)I{HTeaH flO)HHOkIa XP-X. ~ 2. rpyllna raniya cpaBHCeJHI no 11POCTh1M MOaJIYISM. 1. HeUfpHBOJWMble cpaBHeHHSI. M~aCTo rolBOp5T, 'ITO BeqiH'HMbI KOHe'IHoro MARi$ 3U[BJ1MTBP1IOT TeM HJIH Hjibim c 3 a B H e H H H1 M. YnoTpe6.asi% qTy TepMHHonTornio, Heo6XoJLimo YCJIOBHTbCII, 'ITO mbW 6yImem a33yMeTb nOAi cp1aBHeHHeM, B K0T0310e BX0JA5IT l13i3pl1H0HaJIbHbie BeIH'qiHHbi. Mwi 6y~em roBOpliTb, 'ITO BeJIH'IliHa aZ cpaBHHma C BeJINH'HH0 P f3 11 MOAJy.IIO P. ecABH, 6yAy'IqH Bbipa)Kenl tiepe3 nepB006pa3HbIi 3h1emeHT KOHe'IHoro IIoJsi, OHH pa~BHbI.lpy APIP yry. ToLIHo TaK )Ke nOA KOPHRMH c31aBHeHHfl (2.1) f (x) - O (mod p) I I

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/167

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.