Osnovy teorii Galua.

158 158 ~~~V. Ypa,6nen;.q c 3adaflflbmu opynnamu flOJIHHoma hi (x), aIeSIHTCSI Ha p, TO H KOS44~(HILHeHTbl 'iaCTHoro g (x) = (R,, - p (x) h (x)): f (x) XLoJDHbi JaeJlffbC51 Ha p, tITo npOTHBope'IHT Hawiemy npe~noj1oA)KeHHIO OTHOCHTeJabHO K~o9544rHuHeHT0B rIOJHHOMOB g (X), h (X). TaKHM o6pa3oM I? He aeJ1HTCH Ha p, H cpaBIHeHHe IR ~==1 (modj) HmeeT iiejioe pa1LHOHaJlbHoe peuieHne - a. YMHowaH (1.5) Ha a H nOAiCTaIBJIHW Tyata x = OLa, nOJIy4IHM: OTKYAa cJimeXyT, 'ITo a h (a)- -i- Cb JeHT, O6paTHblfl K?(p(C) OTHOCHTeJIbHO YMHo)xeHHSI. Tenepb, n~HmeHq Si K HaflJaeHHOMY HOJI[O Teopemy 80, 6yaeM HmeTb: OL - CZ=O0. Hp H m e ' a H He. H3 aoaaelC~ 3TOfl Teopembf Tam~ cJneJyeT, 'ITO cambill O6aLHf IPHeHm JLiH nOCTpoefHHHi KOHe'IHbIX noniell TaKOB. Bepem HenPHBOAHIMtJ 1 HO MOAiYJHO p HOJIHHOM f (X) Ht paccmaTPHBaem COBOI~ynHOCTb, BCeBO3MO}KHb1X HOJIHHOMOB OT X, CtliHTas x KOPHem ypaBHeHH51I 1(X) = 0. npH STOM MO)KHO BO BC'IKHX pa~eHCT~ax OTKHJab1BaTb KpaTHOCTH qimc~a p. TaKoro pouia nonrrn 6biAH BBeJaeHbl B pacO~~ ['ajiya H nlOJIyqHJIH uHa3saHHe io.Tiefl MHHMOCTefl fanya. MOWHO He BB0AltHTh Kop~ett ypaBHeHHH f(x) =O, a paccmaTPHBaTb X, Kaic nepemeHHYIO BeJH'qiHHy; Ho npmH 9TOM JIBa nOTIHFoma (p (X) H 4' (X) JAOJI}KHbl CtIHTaTbCg paBHbIMH Toriaa H TOJlbKO TO1rLa, eCJIH' HX pa3HOCTb (p (x) - ' (x) JienJHTC no MOIYAHO p Ha f (x); JapyriHmHi c.ioBamH, mo)KeT 6bITb npenca~ane~a H 4)opme p. g (x) + f(x). h (x). B 3TOM cnryq-ae rOBOPHT TaKKe, 'ITO UIOJHHOMbI p(x() H ~~(X) c p BHHMbl no JLBOIIHOMY MOJayJHO p. f(X): B CB5I3H C 9THM KOHeIHbjJe noJIH Ha3b1Ba1OT TaKNKe nogH 0AMHc p a B HeIIHft nO aBOflHIM MOJ~A5IM. 6. 143 Teopembi 82 HeopaTeH BbITeKaeT T e op eMa 83. BCRKHfl HeriPHBOalHMblrl no0 MOJLIJ p HOJIHiHOM n-ft CTef1eHH eCTb JIej1HTerlb rIOJIBOma x" - x no MOAYJHIO P. TaKHM o6pa3oM, %ITo6hI MAtTH Bce HenpHBOJLHmbie no mo2yiiJo p HoAimHOmbi n ift CTerneHII, cjm~IyT pa3JIONKHTJ, nOJIHHOM A~- x Ha HeflpIBOIIHmbie no MOAJ1IJIO P MH~O1HTe.W. HpH STOM HeKOTOpbie H3 MHO)KHTeJnefl moryT 6ulTb CTerneHH HH}Ke n. CyuieCTBO~aahle )e AMJ1 Ka)KJbix p H fl HenP1HB0 -AH4MbX Ho MOA1-JUO P HOJI4HEOMOB fl-ft CTer~eHH catex~yeT aoKa3aTb oco6o. 7. Teopemia 84. EcJIH qjiemeHT CL KOHeIHor'o MOU yaIOBJIeTBOpfi psieT HefnpHBOJUHMOMYypa~BHeHHIO CreneHH ni, TO CL CL == 0 HmmeT meCTO Tor~ia H TOJ~bKO Tor.La, ecaH m AeJIHTC5I Ha ni.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 157-176 Image - Page 157 Plain Text - Page 157

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 157
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/162

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed June 24, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.