Osnovy teorii Galua.

7. Koneqnbie floAl15 155 Ec~wi we 3JIemeHTaMH (1.2) none He icqeprnbiBaeTC~I, To nyCTb m 6yx~eT e co 9JnemeHT, He BXOJJAHMHRf B PRUA (1.2). Torxaa COBoxyIIHOCTh SJ-emeHTOB Xl + x2 M (6yaem ntHcaTb HiX 6e3 'iepTo'ieK CBepxy), rue x1 Hi x2npo6eraloT He3aBHCHMO iapyr o.T jpyra 3Ha'4eHH5B ( 1.2), iiaaioT p2 pa3J1H4qHbIX qjiemeHTOB Hiawero nong. Ltelc~rBHTeJnbHO, ecntH 6w anarp. HmeJ!o meCTO X, + X2 (X =Yl + + Y2 CX, TO OTCIOAa 6bi caeaJoBaJIo (Xl - Y) + (X2 -Y2 A = 0. EcrnH rpH 9TOM X2 -Y2 7f 0, TO, YMHo>Ka51 paBeHCTBO Ha O6paTHblil K X2 -Y2 3J1emeHT z Hawnero nouie, noJ1qiHm mL= - Z (Xj -yi); TaKlM o6pa3oM 0C R~peAJCTaBHTC5I, KaK OJAHH 113 qJIemeHTOB (1.2), WiO MbI 3apa~ee HiCKJIIO4HJIH. ECJH )Ke x2Y2 -y20, TO o rctojaa 6yaeT caea)oBuTb H Xi -Yi =0. EcJ1H 3JiemeH1ThI X. + X2c uC e H~C'ep~blbBaIOT co6ofl Bcero 11011, H P 6yaleT OTJIH'Inblfl OT HHX BJ.qemeHT, TO COBOKyflHOCTb X, ~ X2M* + x3 PI, rae x1, X2, x3 npo6eraloT He.3aBHCHMO apfyr OT.ipyra psmI (1.2), JaaeT PS 9JIeMeHTOB Haliuero nOJISI.,LIOKaaaTeJIbCTBO Toro, 'iTO Bce OHH pa3JultiHbl, mo>KeT 6wlTb npoBeexieo analriori-H'ino[peJwbllymleMy. ECnH 3THMH gJIemeHTamH Hame noiie Hie HCqepUnbiBaeTC$I, BO3bmem OTJ1li'rnuFl OT HHX 3J1emeHT 14 Torua COBoKyn1HOCTb XI + X2 aL + X3P + X47( aa~CT p4 pa3mIHUibX 3J1eMeHTOB nonsiI. flpuoxiOnwasi paccyNJiaenH e, MbI B KOHLLe KOHUJOB HC'leprlaeM Bce nioie COB0K~llHOCTb1O 3J1emeHTOB BH)a x. + X2CL ~ X3P +. + X 0. W-'-IHCJO 9THX gnemeHTOB, T. e, [Top1EoK rnofiB, pa~ee pm 'iq H T..1 2. 3.riemeHTbI KOHeq4HOrP O 1111 IIOX'IlHH11OTCff cneapyouefl,o6o6ateHHOf Teopeme 4Fepmau (Fermat): " Teopema 80. BC91ftn 911emeHT aL KOHeqIHoro 110111 fOp11JKa p"' YIWBJ1eTBop11eT ypaBiieHHIO -p C 0.,LoKa3aTe11bCTBo. FIyCTbCL2I0,HflyCTb CL1, C2, —.. (XL8 (s prn) 6yxiyT ace OTJINHbiHe or HYJI1 3JemeHTbl KOHe'IHoro noiuni (Cpe~ll mx cox~ep}KHTCH It a). YMHo)Ka11 K~awa1b1ft 13 9THX 3J1emeHTOB Ha CL: Mbl flOJ1~tIHM MMI1T HepmBbie H1YJ10 3J1emeHTbl Hainero 110111. Bce 01114 pa311H4 -fHib: ec.iH 6wl Hnprim~ep Hime1o meCTO a( aL CL. aL TO OTC1O1a Mb! 6w Hme.T114 (cLi-cM)CL0,T. e. 141114 C(,=CLj, H4111 a. == 0; HH! OJRH0 He BO3MO)KHo. no9TOMY B11emeHTbI a, M Towe HCqepnbMBa!OT co6o1A Bce HepaBHb1e HYT1lO 311emeHTbl 110111, a rIOTOMY H4X npO3BaneHeHe paBHO UpOH3Be1ta1H1O CL1, CL2,.a. a1, T. e. mb! Hmeem: 8-1 aL OCL1CL2..CL 0CL1CL2...CL GoKpau1iaf Ha HepaBnoe H 10 npHBee~ cl, C...a CL Ofiy4HM:CLPM 1 -1 =0. 3romy ypa1BHeHHIO yaWBJ1eTBOp1l1OT Bce HepaB~bwe Hymo1 311nemeHTb1 110111. YMHOwaII 9T0 ypaenere~e Ha CL, rIO1y'aeM:

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 137-156 Image - Page 137 Plain Text - Page 137

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 137
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/159

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.