Osnovy teorii Galua.

146 746 IV~~~. lpuiwro e-iuq meopuu raAya JIA R MToO yaBBHeHHq 4)YHKL1Hq1 Z' CBsI3aHa CO CTapofl 4lyH]KLuert Z T~ai:. Z'=-(4x + 1)(4x, + 1) +(4x + 1)(4x, + 1)=-16 (XlX2+x~x4) +4 (x1~+x. + + x3-1-x.) +2 =16z - 2 a n1OTOMY (1 6z1 - 2)z1+ (I16z - 2)Z2 +(16z13 - 2I)za 16~ 4, ii = 1z )z1 + (16z, - 2)2Z2 + (16z3 - 2)2z, = 256u - 6~4 C + 8, a'=(16z - 2)z12 +(16z, — 2)z-22 +(16z, ~2 Z3 2= 16u -24. HpHHHma~au BO0 BHHmaHme, trro u,i = 16, u =8, nonyqllrm: =44, Ur 3912, a' 104. nlOACTaBJ1.qS B (21),roaytinm cJaeapyoluee ypaB~eHn~e Avim 1: (2.27) 14 -6412 + 641 =0, Hmeioiuee eAtHHCTBeHHbIPI pa~tHOHaJIbHbIJ AKopeHb I = 0. IlOJLCTaBJIqqu n (2.18) 31aqeHHH1 T ia I, iuonyiymn: (2.28) Z = 0. H-OACTaB~JISqf B CHiCTemy (2.16) 3Ha4eHH51 T = - 3, 0 -4, Z =0, nojiytrn4: -4a, 3a3= 0, 3a2-4a%3-, 3a,,i4, 4, 3(7,0+4a +3 3a0 PeLUHM 9TY CHCTemy: (2.29) 0ao =0, a, = a0, l, a. =0, T. e. ypaBeHerne (2.19) nepexOaHT B (2.20) upH nlomoufl czieayuouero npeo6pa3oBaHHRf: (2.30) X =X2. ~ 3. nOCpoeCHHH flPH UOMOILH IUHPKyJHI H AHHeflKH 1. JRaHO a~nre6pa14iecKoe ypaB~eHnue (3.1) fW -0 IK094)4IHLieHTbl KOTOpMr H3BeCTHMl (wuin tIHCJneHHOI Him~~ reomeTpHtlecKH, T. e. 3 aaai-bl, KaK AJIJ1Hbl OTpeP3KOB). Tpe6yeTCui y3HaTb6, MOMM(O Al1i HaR1TH KOPHH 3Toro ypaBHelHHR, fl01b3ylCb IIOCTpOeHHIIMI I1pH noOMOIH LUMPKYJ5 H AHHeA~KH4. H4TO6bI OTBeTHTb, Ha1 STOT BOnipoc, npealBaplTeolb~o JtoKa)Kem T e o p e M y 74. KaHKaoe ruoc~poeHn~e tU4pKyJ1eM 14 1114efiiol mo)KeT 6wm~ HPHBeaeCH0 K pewieHHIO KBaJIp3THb1X ypaBHeI-HM. O6paTlio, KOPHH KBaalpaTHoro ypaBeHeHHu Bcerjia MoryT 6b1Tb, Haflteiibi nTOCTpoeBHliM Hocpe21CTBOM [IJ4PKYA11 H J1HHefimKH 12Ao K a 3a T e lbC TB0. 1 0. Kauviaoe noCTpoeHne uJ1pKyJ1eM 11 JHHeA1KoR mo)KeT 6blTb pa36HTo Ha a11emeHTapHbie nOCfpoeu-114$1, 143 KOTO~b1X Rawa1Loe COCTOJIT B Haxo)K.LeHMM1 TO'IKH nepece'ierni JaByx KpyrOB (eCui CIIHTw3T ripgmyto 4LCTHbIM B14.IOM K~pyra), ieLCHTp H paaH4YC KO6TOpbIX H3BeCTHbl. AHaJIHTH4qecKH aLeJIo 11pBOJLHTCH K HaxO)1{AeHfi4O pewneHHR1 CHACTem ypaBemi~fl (3.2) ~ ~ f(x -a)2-+- (y -b)2- r2 = O, (3.2) 1~~~( (- al)2 +C(y-b,)2- r 12 = 0)

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 137-156 Image - Page 146 Plain Text - Page 146

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 146
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/150

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed June 21, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.