Osnovy teorii Galua.

1140 I V. 1flpumoxcenux rneopuu raiya _ ______ KBaflapaTFIOMY KOPHIO 113.LHCKpHMHHaHTa ypaBHeHH (21) T. e..HepaBHbIM, HyJflIO, TaK( KaK ypaBueH~e (2.1) B CHJ1Y CBoefl HefHpHBOJLHMOCTH, He HmeeT KpaTHbIX Koptief. Torma Ta~aR I 40pMY.TIHp(Bxa 3aJ1a4H 6yateT AIornycKaTb eepewueH~e H B TOM cniyqae, Koriaa 0 0, oy... cx - 1Hie paqi4oIaJ~bHbI, HnIPHTOM He oAHio pewleH~e, a n! pemeueHHfl, KoTopbje nIoJy~iaTC5, ecJ1H Mb! 6yxaeM npOHI3BOIaHTb B paBeHCTuax (2.3) HaIL BeJ1HmHHmMH Xi,2. X2, X~ Bce-, BO3MO)KHbWe nepeCTaHoBK(H. Ho MO)KHO HaR1TH K<0944?PH1HeHTbI a0, al.,a n-, He peuiag HnpJLBaIHTeJ~bHO ypagHeHHtA (2.1) H1 (2.2). '-ITo6bi flpH1T I K' yhilo6HbwM AivI 9Toro 4)opmyjIam, 6yaeM YMHo)KaTb ypaBHeHH51 (2.3) COOTBeTCTBeHO Ha x1, X2,.. Xnk (k=O, 1, 1p. n-I1) H CKjia~ibIBaTb. Tor.La,. BBOX1$ O6O3HiaqeHHf! Mbi noJIyqum cJieapoyOltyo CHCTemy ypaSueieufl: sl1 nmzfl+SlC(i +S2,7.2+... Io,,-1) f = S 10(0 I +'~' T "3? a1 h (2.4)................... 22.Xkk -1 = sit. 1ao SXl + Su s,.1(% +.. + S2n-2q~t rlonyqaeTCH OnHHTb CHCTeMa it ypaBHeHIIA c fl HeH3BeCTHbIMH H oripe~e — ATHTene m, paBHbIM ALHCKpHMHijaHTYy paBB mHHS (2.1), T. e. HepaBHb1M HYIIIO. 3LaeCb TO.TbKO K~oaq4)HzuyeHTbI JIeBb]X qlaCTefl Enpe1CaBJI5IIOT TPY1LHOCTh LJI5I BbI4HcJq eHHHi. '-ITO~bI BbPIqHCJIt4Tb liX, HccneJayeM, KR KKOA rpynne rlpHHa~tJe)KaT OHR BHYTPH ron~ni, flBfigifol1rocsi KOMrIO3HTOM no~neft K(X1, X2,..,x) K (x1, X2,.. Xi). Fpynria raniya 9TO1ro rionTW JOJ1>Ha 6NlTb elffeJI eJ~m rpynlrbi, o6pa3ouaHHofI HOaTCTaHOBIKam u H1a KOPHHMH1 (2.5) XI) X2)..,Xn1; Xi I x2, Xit. ypaBHeHHII (2. 1) H (2.2). 3TH 17[OICTaHOBKH mbI nojlyq-HM, ecJ1H CTaHem flpOH3BDJAHTb HaJa x, H He3aBBHCHMO OT 9TorO Ha.L Xi BceBO3MO)KHhie lloal. CTaHOBKH rpyrnn ['anTya (kh H (Bl ~,,ypaHL~eFHmI (2.1) H (2.2) (W~6=,X 610 BeJ~qIHbIHH )e (2. 6) I;YXkXk~, 02=22EXkXk,.,ou.I XAC h k~~~~~~~~~~ OCTaIOTC$1 HeH3MeHHbUMH, eCJIH IIpOH3BO IJU~ fiaa I(OPHqM1M Xi. X2,..., Xn H X1, X2,.. X,, O1HOBpemeHHO nOACTaHoBKH, OAHHaKOBO HepeCTaBJIIIflL~He Lu14pUl ripH Haaniiewawe BbI6paHHOfl HymepatflHH KOPHerf. TaKHM o6pa3oM; smH BenIHqIHHbl He H3meHI1IOTCfI Ripl floJCTaHOBia, o6pa3yIOuulIx rpyrrry, noPHXLOK KOTOPOfl pa~eH noplu.y Kaz.oog 113 rpyrn n (u CieimBare~nbHo, *3T ItcHmmeTpIemeCH 4IyHICL.UHH HOCIT Ha3BaHiie k-x C y m m C Te ie n eef OHtl CBS!3aHbi c KoajXpIIIHeHfama ypaBHeHHIIf cJIeJLYoULMH CooT1oHWeHHIMII: *I + a=, s 2 + a~s1~2a, =O, s3 +al.%+ a281 + Oa =O)... IcOTopbme HmBabIBOTCH 4Io'pmyJamii HbIoToHa.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 137-156 Image - Page 137 Plain Text - Page 137

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 137
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/144

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed June 23, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.