Osnovy teorii Galua.

~ 1. PodCM6eeuoCMb noeiiel3 135 paI4HoHaJnbHOCTH KOPHR ypaBHeHHH (1.2) pa,36H4BaeTCfI Ha TO )Ke 4Hcjio HeHpH4BOAtHMbIX ypaBHeHH4A. 3. Bbipa)KeHirni B Teopeme 72 pe3yhlbTal' pacrnpoCTpaH-IeTC5H TaKwie Ha TOT c.Tiyqa~i, KorJa ypaBHeHHH (1.2) H ( 1. 3) y~xe He 51BJIH1OTC51 HOpMa.1bHbIMH.,3Aeci, Aeiio OCJIO}KHSmeTCq oATHaKO Tem, '4T0 nocnie nHHcoeAIH~HeHH ypaBHeHHe pa36HlBaeTC5H Ha HeCKOJLblKO HeUIpHBOa1HMbIX ypaBHeHHfl., CTenHFiH KOTO~b1X MOFYT 65bITb iiepaBHbl. HlpHBeJaem 3hlemeH-Tapvioe JLOKa3aTeJHCTBO 3TOPl Teopembiu, npHuaaniuewauee Bayppy, (M. Bauer). FHyCTb (1.2) H (1.3) 6yayT JBAM He[IplBOLLHMbIX ypaBHeHHH CTene~lefl COOTBeTCTBeHHO m H fl, H nyCTb HX KOPHH 6yRzyT COOTBeT-CTei3iR O X1, X2).. Xn Yll Y2,. Bo3bmeM 4~YHKILHIO p (X, y) (HanHpmep X + CY) TaKoro poaa, 14To6bI ee 3HaqeHi4H cp (x1, y,) (i = 1, 2.0..,- M;] =,,. n) 6bIJIH pa3JIH4qHbl. HlYCTb h(z) =0 6y~rJeT ypanIieHtie, KOTOPOMY yAtOBJeTBOpRIOT Bce 3HaqeHH51 p (Xi, y1), H1 nJCTb B pacaPHamt o6AnaCTH paLLHOHaJ~bHOCTH oHo pacnajaamcl Ha e HenpHiBOAlHMb1X ypaBHeHHI1: h(z) = hl(z). h2(z).,( fpiH4em nyCTh CTenIeHb hi(z) 6yaeT k, (i == 1, 2,... e). PaccmOTpHM o6aLe HaH6O~lbWHe JLCJHTehIH (1.4) fAx, y') = -((x) h((p (x, y))), g, (y, x) (g(y), hi Qp (x,,, y)) i 1,2, ti CTCenetb fXX, Y, He 3aBH4CHT OT Hbi6opa KOPHR Y,. HlyCTb OHa paF;Ha inm HlpoH3BejteHrne fi(X, Yl).fj(X, Y2)... f,(X, Y11) 11B115eTCH, C OjiH-Of CTOPO~mI, nOJIHHOMOM C~erneHH nin,. C xRpyrOiA CTOPOHbl, CTene~Hb fi(X, Y) B CHJIY (1.4) paB~a 'IHC1AY TaKHX 3Ha'-eHHOi (p (X1, Y) C (~HKCHPOBaHHbIM 3FIa4KOM VI KOTO pbie 39BA5110ITC59 KOPH5IMH IIOJ1HHoma h,(z). 3aCraBJW51 3Ha'IOK V npo6eraTb BCe 3Ha4eHHR 1, 2..., fl, mbi noj1y4Hm '-HCJIO BCeBO3MO)KHbIX 3tiaqeHHR1 (p (Xi, yj, o6pamigaoutix I,(Z) B Hyh~b, T. e. Cre — n2"Hb k, nIOJHHOma hj(z)., TaKHM o6pa3oM Mbl timeem: MeHRA POJ1BMH 1(X) It g(X) Hi o6o3Haqag qepe3 n1 CTeneHb oHhiHHoma gi(y, xv) MbL mb ojiyqHM TO4HO TaKHM )Ke o6pa3OMW OTKy1La (1.5) -, e)

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 117-136 Image - Page 117 Plain Text - Page 117

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 117
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/139

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.