Osnovy teorii Galua.

~3. Paapewuumbie opynnulb u ypaunenuq 3 1 131 OTRCYA3 HJIH U( = 0, HAH [3 = 0. B o6oHx cnTyqaBBx mbl riouyqaem JByqjieHHbie, T. e. paapeummbe ypaBueHHi5i. 13. BeumeCTBe~bibe paaH~aJnbl. Eliue CO Bpemerni OTKPblTHRl peuieHRni Ky6Hq-ecKHx ypaBHeHHRf o6paT HA Ha ce65a BHumaHHe epaKT, 'ITO B TOM Cny'iae, IKol-Ja Ky6H~ecKoe ypaaiieH-me HtmeeT Bce Beu4eCTBeHlibIe KOPHII, paJxiKaubHoe HIX Bblpa)KeHit HerHpemeHHO coqep.-~KHT KomrJmeKCHbje BeJIHqIHHbl, OT KOTO~blX HJHKaK He y~a~auioCb li36aBHTbCS. BB BHJ9 BToro paccmaTpHiBaembift Cntyqaiaf flonTyLIHn HII3BaHHe c a sus i r re du c ib ii S, T. e. HenpHBO.LIHMoro Ciy'ias. Teopi-n rajnya a~aeT BO3MOXKHOCTb BCK<PbITb npi4'-HHY STofl HeyXaa4H H alOKa3aTb, 'ITO B 3TOM Cuiyqae JaegCTBHTeJabHo HeBO3MO)KHO Bbipa3HTb KOPHHi ypaBHeHH5I 'iepe3 lBeLjteCTBeHHble pa)Iu4Kauibi. Teopema 70. EcJil B ypaBHeHHH4 (3.33) f(x)= ---0 BCe KOPHH BeLLeCTBeHHbJ, a HOP,9ULOK rpynirbi coJLep)KHT HetieTrrbe fnpoCTbie MH0)KHTeJIH, TO ero KOPHH4 He MOrYT 6wlTb Bblpa)KeHbl 'iepe3 BeILueCTBeHHbie paALU4aJJbJ.,L 0K a 3a Te 11 b C T B, 0. l-IYCTb ypaIBHeHHe (3.33) HmeeT BeI1LeCTBeHHbie KOPHH XI, X2,... IX,, H peaiaeTCsi B paA~HKaJnax.,dOnyCTHm nipH-TOM, 'ITO rpyrrna ypaBHeH5ig (3.33) floHHiaeTC5B, ecuin mbl [IpHCOeJiHHM K o6JnaCTH paLWOHaJ~bHOCTH HppaBLLFOHaJIbHOCTb J/a, i-je a BeeT~Ho qHCJIO H p npoCToe qtiHcjlo. Torxaa no Teopeme 63 3Toro we noFIH}eHI4I MO)KHO JLOCTHrHyTI-, nHHcoeILHHflfl K o6JnaCTH paiJHOHaJbHOCTH BeJiH'IHly (ja) nonw K(1(a) JImamlp~o OJLHOBpemeHHO B. flo.' K (xl, x2,.., x,j). HO Ta IC KaK no~ne K~x1 x2,..,x~)BeLLeCTBeHHO H HopmaJlbHO, TO (Fp (i/) H cnqe~j c iieft BeJ1H4HHbl.lie)aT B noue K(xl, X2,., X,,) Hi nOTOMY BeLIieCTBeHHbI. 4~OnpIxel)KlbIMH Cp (a) BeJ1HqHHaMH H1BJARIOTCH BehIqjH'IHI P 2 2n - 2 it.. ut =e CO S - +tisin -, e == cos - -sin - (cm. ~ 1). Bce~ p p p BeA1HMHHbi (3A34), coruaCHo YCJIOBHI-O, BemieCT~eH~~i, a nIOTOMY OHH He MCHRIOTC'i IpH rnepexoiae ic coripmiKeHHo-KomnaeKCHbIM BeJIH'IHHaM, T. e. nmeeT me CTO BcHJay'IerO BeJLHqHHa (p /a) nH~HaB~J1~ie(T B Houie KG/, )K rpynne $,coitepmaetel nlQLCTaHOBKY 2 rae S = SEf~. oTlcia riopiaoK n1OJCTaHOBKHi S He'IeTHblfl (SP 1), To rpyrina k) Aouo)ua Tai~ie couiepwar'b flOJCTaH-OBKY S. TaKHM o6pa3oM Ben~'HqHa p xtornIWa Bbip3)KaTbCfl 4epe3 p-e KOPHH H3 eJIHHHbl~h, T. e. yAOBJIeTBOpfITL HeFHPHBOJAHMOMY ypaBHeHHIO, CTeIneHB KOTOporo eCTb aLenlHTeJnb '4HcJa p -,a noToMy He mo)KeT IIOHH3HTb rpynny ypaBHeHH5I (3.3 3) B p paa.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 117-136 Image - Page 117 Plain Text - Page 117

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 117
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/135

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.