Osnovy teorii Galua.

130 130 ~~~~Ill. Pa3pewumbze ypameuenw rHepeimem K LLeJbim qHicjam. Hlonarasi s = - 8.4-.- rxae X, t17 V ixentie twcnaa, rIony'HM TaK Ha3bIBaeMQe ypaBne~iie 3 n.iie pa (L. Euler): (3.31) X~~~~4 + (2 v)4 = tL2. V2.,LI4JI9 JAO Ka3aTebCTBa ero HeBO3MO)KHOCTII B0C[0Jlb3yemci4 meTOJJOM 3Bfljepa, HOCHIILHM Hm3BHi4e descen te infinie (IMH~ a JI rOpHTM HQHH)IKeHlf 5). HpHmeH5151 OflfTb (430pMYJUbI fHdcIaropa, HlOJyqLUIM: X2 2- ~2, 4v2 = 2, V- -l 143 BTO0p11l 4)OpMYJIbl c~nexiye, 'ITO a H3 rnepBoI4, 'ITO X 1LeJ1HTCR1 Ha %. Ho~narasg X = X x, limeem: Bocno~lb3yemcg 0O1~1Tb c~opmyJTamiH Vheparopa: C2-=f2 +g2, 2o)2 =2fg,?\1=J2-g92. 1H3 BTOpO1R 43OpMYnbll cUeJyeT, 'ITO f -k2M, g=P 1M. Horloaram C tm, [nony'1mm: (3.32) C2=k 4 TaKHM c6pa3om mbi pti~xoJaHM K ypaBHeHliHO Toro mK Biiaa, 'ITO(31) 1-1 peiueiui KOTOP)Or0 HmeIOT meHbJJIfK BeTiHi'qlHy. H~poaeJIbIBafI HiaL (3 32) Te xe npeo6pa3oBaH115w, Mbl OfIUITb ymeulibiaeM Be1H'IHlibl peineHHfI. H o B BH4XL Toro, '-4TO 9TOT [npoLLCC He mo)KeT IITTM AO 6ecKoue'lHocT14, Nlbl 3a - KJluo'Iaem, '-ITO ypaBl-eH~ie (3 31) He peiuaeTCRi B [Le.TbJx paLtHoHaJ~btbix 'HC-.nax, a HOTOMY ypanieie~e (3.30) Hie momKT iime-Tb pa~f1HaHJlbHbIX Kopieft. TaKHM o6paaoM ypaB~ieH~e (3.29) He peuwaeTCH B palllaJxaax. 12. Korata ypaB~eHme (3.26) HmmeT xpaTHbie KopHM? B WayI Toro, '4TO u -v2 9T0, 6ya i4meTb meCTO Toraa H TOJ~bKO TorJaa, ecilH ypaBHeHHie (3.24) timeT HAll- 1KpTHbie KOPHH1, HAH paBHbIe nio Inul'-ll'He Hi npOTHI3OrlOJlOWKIbie no 3HaKy KOPH!-! MeH%51 3HaK flPl HeH3BeCTHOB V B Bbipa}KeHHH (3,24), mMi flony1tiMH3meHeHHbIM 3HiaK TOJAbKO nepeia lIJeHom Av, a nOTOMY CJnyqah1 pa3Iib1X nO BeJlH'IHe H nIP0THBOHOAO0KHb1X HO0 3HaKy KOpHeft mo)KeT HmeTb meCTO TOJlbKO B CnTy'Iae A = 0, T. e. KoPIaa HlCXOJLHoe ypaBHeHHe (3.19) HmeeT K~paTHble KOPHH1. Ecatii we yp iBHeHtie (3.24) iimeeT KpaTHbie KOPHH, TO C HHM HmmeT o6uwe KOPHH JlpOH3BoJ2amI: 6 v5 - 20 ar3 + 30OC2 V~ A = 0. HOUITaBJiff OTCioJaa sMatieH-~e A B (3.24), nouay'IiM: -5v6 + 15caV- 15CX2V2+ 50 3 -5(V2-a)3- 0. OTCio~aa Ui - -2 c=. HOJICTaBjimIY B (3.26), 6yxmem HmeTb: 3125[P4c -0,

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 117-136 Image - Page 117 Plain Text - Page 117

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 117
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/134

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.