Osnovy teorii Galua.

~ 2. Ypaenenuu Oeizenun1 ipyea15 115 corip~DKeHHbIMH peJIH4HHamH, T. e. 1BJHIIOTC5H KOPH5IMH O1LHoro H Toro we ypaIBHeHH5I, TaK KaK Ha[1pImep noJLCTaHOBKa S nepeBOAHJT HX Apy B atpyra: HmeHHO, nepeBOAJHT 71 B qklH qelB Th q-To6si UIoJ'yHTb 9TO ypaBF~eHHe, Faycc flpe.TLJo}KHJ flpHem JLJHI Bblpa)KeHHR UIpOH3BeJLeHHI ILBYX HepHOJLOB B BHae~ cymmbI nIpHoILoB c paLLHoHaJnbHbIMH KO3c1ppHILHeHTamH. HyCTb ~xe+ x+e ~ P.r - + ILe + + Alt 1) e CTaHem nepeMHOxa(Tb 9TH KO,9~cpi4HHieHTbI, co6iHpasi BmeCTe IppOH3BeJaeHHi MHo)KHTeJaefl., OTCTO$HHIHX xtpyr OT iipyra (B roPH3OHTaJqbHOM HanpaBJ eHHH) Ha ojXHOM H TOM we pacCTO5BHHH, npii4em ecJiH pwii 'lJeHOB-MHOWKHTeJnejf KoHqaeTC$H, TO mu! 6y2aem HiaLIIHaTh ero, OflUTb c HpOTHiBoOnOWI}HorO KOH=~a 6 +F, 66L +e+ +eX+(f e e 8.+(I-l)e) + + +~ +e + eX+e aL~2e + + zXt( t-I)s a ' + (2.112)..... + ( L ~+ Ic + C+ e + + S-X+ (f 1) e (t-2e) PacCMOTpHim 6.nHwe KaKyIO-HHi6yJab H3 CYMM, HaxoJJHJHXCH B CKoI3Kax, Hanp~mep (2.13) ex * Eli -4- he + eX+e'L 6+(h+ 1) e +a6X+2e - SL+I(h+2)e + '-IHCJIO e, PE I+hefBJ1IsiTC51 TI1OH3BeaeHHem p -bix KopHefi 13 eJLHHHIjbJ, T. e. Towce V -imM KOP.Hem f3 eJIHtHI~bl, HjiH nepBOo6paatibJM, HJIH paBHimM eAHHHue. 13 nepoMm cjiylae OH COJICp>KH4TCfl B BbIpa)KeHHH OIHoro, H3 I1epIioJOB (2.11). EcJIH pHHmeHHTb K Hemy IIOJCTaHOBKY S', TO nOKa3aTeJ1H y ero MHIO}HTeJneiI yBenJH4aTCH Ha e eRLHHHUt, T. e. OH Hepefl~eT B cJ~eJayoLUHfl LIJIH Bblpa)KeHH$I (2.13). TaK<Hm o6pa3oM Mb! y6eau-imcsi, 'ITO Bce qnCHbl ~BbipaNKeHtHH,.rtepeXOJI5T itpyr B apr riocjieaIoBaTeJIbHbJM npiimeHeH1M FlemTLCTaHOBKH S'c, T. e. HBJIHIOTC!I nocJIeJOBaTeJnbHbIMH 4JIeHamH OatHorO H Toro we f -LIJeHHoro nepHO.Laa, TaK WiO Ka)KJIoe BbIp~WeHkie B CK~O6KaX B 4popmy~le (2.12) paBHO OJaHOMY H3 I1pHoJLoB (2.1 1). Homepi MTOm nep~oaa Mb! y~iaeu, KaK TO~fbKO riepeMHO)KHM e,. H ej + heECX 8_~ a+he = 1, TO Ka)Ktb~ift nocneaytoiou ~ '1JIeH BbIpa~i(eHHq (2.13) Towe 6yxaeT pa~eH ejlHHHlue, a nIOTOMY Bce Bbipa}KeHHi (2.13-) paBHO f Bbipa3HM f B Bitue OJIHOpOJLHOA JiHHetIHOR4 43yHKIIH OT nep~HOLOB (2.11). LIAiR SToro cJIoKHiM- o6e tiaCTH paBeHCTB (2.1 1) aP o6paTHM BHHIMaHHe Ha TO, 'iTO B fnpaBOfl qaCTH y Hac FIOJ1y4HTCH cymma Bcex nepBoo6pa.3HbX p-blX KOpHefl H3 eXLHHHI~bi. HO TaK 1(aK 1 + e + e2 +...+ Sp-I 0, TO ripaeagi MaCin noiy'ieHnoro PaBBHCTBa paBHa 1 T. e. Mbi fnoIIytiim: Omy~aa 8* ~ ~ ~~ - fl fq-

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 97-116 Image - Page 97 Plain Text - Page 97

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 97
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/119

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.