Osnovy teorii Galua.

~S 2. Ypaomenq dmeneuR Kcpye~a13 113 6. Terleph pa36epeM Cniyqafl HPO143BOJqbHoro m. H-yCTEb MPt cPa2 p/ h BBeJaem o6O3Ha'leHHl! in in ( 1, 2,.. k). pi i 14tihcjia mk, in2,..,mk He HIMeIO-T o6uA~1x )ieJIHTenlerl, a HOTOMY HeoripeJlen'eHHoe ypaBHeHkle misl +M2S2 +.. +MkSk~i HmeeT peLiJeHHHf B 1Lejibix qf~c~'ax s1,t s2,..,Sk. Bbi6paB OILHO Tawoe pewe. Hite, 6yJaeM HmeTb: 2iti (2.10) e I - =a~ 8it+ms +MA kA Si S raLe BJiiHqHHbl BZ B" e e n(=1, 2,..k) 51BJ1111OTC11 rnepBOO pa3HbIMH Pjai -Mll KOPHHM11 113 eammH1ubi. 4I)opmyJa (2.10) nOKaublaeT, 'fTO rntofofl in-A~ KopeIb 13 eJl14HHL~bI mo)KeT 6um~ pa~ll4OHaJibHO BblpaNKeH qepe3 KOPHH14 3 eJJIHH4L~bl, CTeIneHR KOTOPb1X 5lBJIHlOTCsI 'CTerneWIMil HpOCTb[X qiieji, BX0,t~iIMHM14 B Mt. rpynria nonsm, o6pa3oB HHoro nepBOO6pa3HbIM Mi-MlM KOPHemH13 eJHHH4[bI eCTb Hpsimloe npol3Beae~HH rpy[1H, H430MOp4)Hb1X C UrpflHaMH noaieft KOpHefl 113 eJLHHHUqb1, CTeiH~H4 KOTOph1X flBJIIHOTC5H crefieH5ilMt rPOCTb1X 'imceJ. H4To6bI y6eaH~bCR B STOM, aLocraTOqHO o6paTHi-b BHHmaH11e Ha TO, qro eciw m = mn1 i2, rie mt1 14 M. B3314MH0 npOCThl)e qiHCIa, To noioe M-wX KOPHel 143 uJHHIWubi eCTb KOMrIO31T HoJneil Pm-blX 14 Pt-biX KopHefi 113 ejuHH14LtbI, a 3aTem f1npMHmeHTb Teopemy 60. 3aMeTliM eHle, 'ITO B 3TOM Ciiyqae nosi H 13 Ml1-b1X H 143 Pt2-bIX KOpiieft 113 eJiJHHL~bl B3ai1MHO-ulpOCTbl. )jJeflCTB14TeJ~bHO, CTenH~H1 9THx floJefl CyTb COOTBeTCTBeHHO cfpifl) 11 cp(m) (CM. Teopemy 65, cJneLCTBHe). B To we BpemsI CTen~evb HX K0M1103l4Ta eCTb c(PM), T. e., Kaic H3BeCTH-O, c{,.(Mn) - p(m2). B TO we~ Bpemq eCAH1 6b1 5Tki noiii i4me11 o6iijee HppaBli1HaJlbHoe flo.Te, TO CTeI1eHb HX KOMHO3HTa )1OJI>KHa 6biqla 6b1 6blTb meHb111e flpOI3BeJeHH5I q(M,). yp(m). TaK14M o6pa3oM rpynftia FI01111 Pt-bIX KOpHe1ft 113 emiHHbl~b, KaK Hp11MOe t1poH3BeBiBHvi 1114(j114'IqeCKvtX rpynn, eCTb a6enleBa rpyrrna. 7. Pa3peulnMocTb ypaBHeHHH' JWJJeHHS1 Kpyra. JIOKaMwem, 'ITO ypaBHeHHII xtenreHHH Kcpyra pa3peIII14Mbl. 143 coo6pa~tHli r. 6 BbIXOJL1T, 'ITo npIi JAOKa3ATeJ9bCT13e Mbi mO}Km orpaH14qHTbC51 C1yqaem, KcOr~a mt = p, rie p -iipocToe q'iCIIO. HlyCm p -HeqeTnoe npOCToe 'IHcJIo. Torta B n. 4 MbU B11ieJH, 'Iro X a==0 eCTb ILjHK.Ui14eCKoe ypaBHefH14e CTeIICH4 Tp(p") = p", (p-i) p UIo3TOMy, K3K MbZ 9TO BaeaitB B ~ 1.3, 9T0 ypaBHeHiie pa3peuLImo, ecCJI Hp14oeJU4I414T b K o6iiaCri palLIoHaJnbHOCT14 KOPH H 13 ul1HHHlb!M CTeil~iem M- p- 1). 3Ltecb OnT11Tb B cimy1 H. 6 A.ICTaTO4qHO paccMOTpeTb KOPHH4 113 eJlffnli~bl CTeieH H p 7-, a TaK)Ke Cueftlee, paBlib!X CTeUIeH11m npOCTbIX

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 97-116 Image - Page 97 Plain Text - Page 97

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 97
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/117

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed May 1, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.