Osnovy teorii Galua.

110 110 HI~~~11. Pa3pewu~mve ypaemenun So + 81 +. + S. = p 9TO H me T M eCTO TOJI bKO B Ciiy ae Sk p, R~Si 0 npli i/k (k =O,0 1, 2... n), H1 B 3TOM cayqae - =PI 1. n0T0MY MU! HoJnyqHM cpaBHeHie [a0~alx + a x2 +.. +a,.xnIP ~a + a PxP + apX2p+ + + apx' (mod p). HO 113 Tfeopembi (1)epma cneatyeT: a a 0,ap =a, apzza V..., a na(nmod p), OT~y~aa ouoHqaTenlbHo: 9'To H eCmb 4opmy-ia LLI"HemaHHa. 2(l. rHpHBeaeM HecK0JIbK0 BHLI2O 3meHeHHoe aoKa3aTeJnbCTBO HenlpBo~u4 -M1OCT1H. Klilypa (J. Schur)..Ljoyyc'rliM, t-irio f (x) eCTIb HenpHBoalHmb~it noJIHHO0M, K0PHeM KOT0poro si~ji~eTC)1 HeKOTOpbIlt neplloo6pa3Hhht in-it iK0peHb H3 eaHHfluuJ a. Bo3bMeM HpOI43BOJlbHOC 41l4CJ10 /7, MaHimHo-IlpocToe c mf, H1 AoKaKem, WIO SPeCm TaKmKe K0peCib nIoJIHHOMta f (x). Thrnycxag HpOTHBHoe, MEJ HaAlIem iApyrofl HenpHB0AlHMbli4 HOJ-IHHOM g (X), R0PHeM K0T0poro 5IBfiffeTCH SP. Torata x"~ -I1, aensich Ha o6a B3aimHio - np0CTbie IlOJUIHOMa f (X) 11 g (x), pa3JaeaH4TCH1 H Ha iix npouaue~iieue, a n1OTOMY )iHCKPH4MHHaHT D noJIHHoma x - I pa33JeJIHTCff Ha pe3yJlbTaHT H10JIHOMOB f (x) H g (x) (r~aaBa 11, ~ 1. 9, epopmyJna (1. 15)). Ho ec.'w F (x) = x' -1, o npOH3BOAHaa F' (x) = mxm a IIOTOMY rn- 2 (mn-l1) 3 m-1M(M (rn-i1) m (M +1 = m 2 -~mm C.ixpyroti CTOPOHbI, 1? (1, g) -f (YI) f (Y2). -. f (Yk), r~xe yi, 1ys * Y 't - I(OPHH HOJ.IHHOma g (x). PacCMOTpHM BenkTH4H~Y f (yl), uie =l SP, HlO~rbayfiCb cpaBHeH1em (2.8) Hi flp1H~iimaf BO BH11maHi~e, 'ITO f (e) =0, nonyt4HiM: f (y]) 0a (no d p). 3'To O3HaqaeT, tITO BeJ1 1'IHHi f (Yi) MO0)MAO Bbipa3HTb, n<K 4)yHK1JH10 OT B C ixenbimHi K034cpHILlHeHTamHi, aenlJL1l11MHCfH Ha p:f (yl) = p. cp (a). Hoe MOW0HO11 Ha 0CH083H1414 Teopemh1 65 Bbwpa3HTb, KiK CTe11eHb Yi, TaK 1<aK B CHRYI Teopemh1 64 y1 a~ eCTb rnepBoo6pa3Hblfl KO~eHb Mf-fl CTe-!IeHH 113 eJUHHHUbl. Ho9ToMyf (yI) =p. t (yl), rae ~ (y) nbiHJIHOM c ute-.ib!imH paIJJ4OHaJlbHbIMfH iomt~xIHLuteHf1ami. Flony'eHnoe COOTHowe1HHe OCraHeTC11 cnpaBeatBILIbm, ecCA m Mb!e33M yHM Yio.16b11m KOPHeM HefIPHBOJlHmor'0 ypaBeHeuHs g (x) = 0. FIOJCTaBJI115 nonyqIaembue paIBeHCTBa B Bblpa}KeH11e onR (,g), nlony'uHM:R Ag) _- kh Tp(Y1) TOO~) CP(k.

/ 232
Pages

Actions

file_download Download Options Download this page PDF - Pages 97-116 Image - Page 97 Plain Text - Page 97

About this Item

Title
Osnovy teorii Galua.
Author
Chebotarev, Nikolaĭ Grigorʹevich, 1894-1947.
Canvas
Page 97
Publication
Leningrad,: Gos. tekhniko-teoreticheskoe izd-vo,
1934-
Subject terms
Galois theory

Technical Details

Link to this Item
https://name.umdl.umich.edu/acr5415.0001.001
Link to this scan
https://quod.lib.umich.edu/u/umhistmath/acr5415.0001.001/114

Rights and Permissions

The University of Michigan Library provides access to these materials for educational and research purposes. These materials are in the public domain in the United States. If you have questions about the collection, please contact Historical Mathematics Digital Collection Help at [email protected]. If you have concerns about the inclusion of an item in this collection, please contact Library Information Technology at [email protected].

DPLA Rights Statement: No Copyright - United States

Manifest
https://quod.lib.umich.edu/cgi/t/text/api/manifest/umhistmath:acr5415.0001.001

Cite this Item

Full citation
"Osnovy teorii Galua." In the digital collection University of Michigan Historical Math Collection. https://name.umdl.umich.edu/acr5415.0001.001. University of Michigan Library Digital Collections. Accessed April 30, 2025.
Do you have questions about this content? Need to report a problem? Please contact us.